C++基础语法梳理:算法丨十大排序算法
Posted 一起学编程
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了C++基础语法梳理:算法丨十大排序算法相关的知识,希望对你有一定的参考价值。
本期是C++基础语法分享的第十六节,今天给大家来梳理一下十大排序算法后五个!
归并排序
归并排序:把数据分为两段,从两段中逐个选最小的元素移入新数据段的末尾。可从上到下或从下到上进行。
/*****************
迭代版
*****************/
//整數或浮點數皆可使用,若要使用物件(class)時必須設定"小於"(<)的運算子功能
template<typename T>
void merge_sort(T arr[], int len) {
T* a = arr;
T* b = new T[len];
for (int seg = 1; seg < len; seg += seg) {
for (int start = 0; start < len; start += seg + seg) {
int low = start, mid = min(start + seg, len), high = min(start + seg + seg, len);
int k = low;
int start1 = low, end1 = mid;
int start2 = mid, end2 = high;
while (start1 < end1 && start2 < end2)
b[k++] = a[start1] < a[start2] ? a[start1++] : a[start2++];
while (start1 < end1)
b[k++] = a[start1++];
while (start2 < end2)
b[k++] = a[start2++];
}
T* temp = a;
a = b;
b = temp;
}
if (a != arr) {
for (int i = 0; i < len; i++)
b[i] = a[i];
b = a;
}
delete[] b;
}
/*****************
递归版
*****************/
template<typename T>
void merge_sort_recursive(T arr[], T reg[], int start, int end) {
if (start >= end)
return;
int len = end - start, mid = (len >> 1) + start;
int start1 = start, end1 = mid;
int start2 = mid + 1, end2 = end;
merge_sort_recursive(arr, reg, start1, end1);
merge_sort_recursive(arr, reg, start2, end2);
int k = start;
while (start1 <= end1 && start2 <= end2)
reg[k++] = arr[start1] < arr[start2] ? arr[start1++] : arr[start2++];
while (start1 <= end1)
reg[k++] = arr[start1++];
while (start2 <= end2)
reg[k++] = arr[start2++];
for (k = start; k <= end; k++)
arr[k] = reg[k];
}
//整數或浮點數皆可使用,若要使用物件(class)時必須設定"小於"(<)的運算子功能
template<typename T>
void merge_sort(T arr[], const int len) {
T *reg = new T[len];
merge_sort_recursive(arr, reg, 0, len - 1);
delete[] reg;
}
希尔排序
希尔排序:每一轮按照事先决定的间隔进行插入排序,间隔会依次缩小,最后一次一定要是1。
template<typename T>
void shell_sort(T array[], int length) {
int h = 1;
while (h < length / 3) {
h = 3 * h + 1;
}
while (h >= 1) {
for (int i = h; i < length; i++) {
for (int j = i; j >= h && array[j] < array[j - h]; j -= h) {
std::swap(array[j], array[j - h]);
}
}
h = h / 3;
}
}
计数排序
计数排序:统计小于等于该元素值的元素的个数i,于是该元素就放在目标数组的索引i位(i≥0)。
计数排序基于一个假设,待排序数列的所有数均为整数,且出现在(0,k)的区间之内。
如果 k(待排数组的最大值) 过大则会引起较大的空间复杂度,一般是用来排序 0 到 100 之间的数字的最好的算法,但是它不适合按字母顺序排序人名。
计数排序不是比较排序,排序的速度快于任何比较排序算法。
时间复杂度为 O(n+k),空间复杂度为 O(n+k)
算法的步骤如下:
1. 找出待排序的数组中最大和最小的元素
2. 统计数组中每个值为 i 的元素出现的次数,存入数组 C 的第 i 项
3. 对所有的计数累加(从 C 中的第一个元素开始,每一项和前一项相加)
4. 反向填充目标数组:将每个元素 i 放在新数组的第 C[i] 项,每放一个元素就将 C[i] 减去 1
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
// 计数排序
void CountSort(vector<int>& vecRaw, vector<int>& vecObj)
{
// 确保待排序容器非空
if (vecRaw.size() == 0)
return;
// 使用 vecRaw 的最大值 + 1 作为计数容器 countVec 的大小
int vecCountLength = (*max_element(begin(vecRaw), end(vecRaw))) + 1;
vector<int> vecCount(vecCountLength, 0);
// 统计每个键值出现的次数
for (int i = 0; i < vecRaw.size(); i++)
vecCount[vecRaw[i]]++;
// 后面的键值出现的位置为前面所有键值出现的次数之和
for (int i = 1; i < vecCountLength; i++)
vecCount[i] += vecCount[i - 1];
// 将键值放到目标位置
for (int i = vecRaw.size(); i > 0; i--) // 此处逆序是为了保持相同键值的稳定性
vecObj[--vecCount[vecRaw[i - 1]]] = vecRaw[i - 1];
}
int main()
{
vector<int> vecRaw = { 0,5,7,9,6,3,4,5,2,8,6,9,2,1 };
vector<int> vecObj(vecRaw.size(), 0);
CountSort(vecRaw, vecObj);
for (int i = 0; i < vecObj.size(); ++i)
cout << vecObj[i] << " ";
cout << endl;
return 0;
}
桶排序
桶排序:将值为i的元素放入i号桶,最后依次把桶里的元素倒出来。
桶排序序思路:
1. 设置一个定量的数组当作空桶子。
2. 寻访序列,并且把项目一个一个放到对应的桶子去。
3. 对每个不是空的桶子进行排序。
4. 从不是空的桶子里把项目再放回原来的序列中。
假设数据分布在[0,100)之间,每个桶内部用链表表示,在数据入桶的同时插入排序,然后把各个桶中的数据合并。
const int BUCKET_NUM = 10;
struct ListNode{
explicit ListNode(int i=0):mData(i),mNext(NULL){}
ListNode* mNext;
int mData;
};
ListNode* insert(ListNode* head,int val){
ListNode dummyNode;
ListNode *newNode = new ListNode(val);
ListNode *pre,*curr;
dummyNode.mNext = head;
pre = &dummyNode;
curr = head;
while(NULL!=curr && curr->mData<=val){
pre = curr;
curr = curr->mNext;
}
newNode->mNext = curr;
pre->mNext = newNode;
return dummyNode.mNext;
}
ListNode* Merge(ListNode *head1,ListNode *head2){
ListNode dummyNode;
ListNode *dummy = &dummyNode;
while(NULL!=head1 && NULL!=head2){
if(head1->mData <= head2->mData){
dummy->mNext = head1;
head1 = head1->mNext;
}else{
dummy->mNext = head2;
head2 = head2->mNext;
}
dummy = dummy->mNext;
}
if(NULL!=head1) dummy->mNext = head1;
if(NULL!=head2) dummy->mNext = head2;
return dummyNode.mNext;
}
void BucketSort(int n,int arr[]){
vector<ListNode*> buckets(BUCKET_NUM,(ListNode*)(0));
for(int i=0;i<n;++i){
int index = arr[i]/BUCKET_NUM;
ListNode *head = buckets.at(index);
buckets.at(index) = insert(head,arr[i]);
}
ListNode *head = buckets.at(0);
for(int i=1;i<BUCKET_NUM;++i){
head = Merge(head,buckets.at(i));
}
for(int i=0;i<n;++i){
arr[i] = head->mData;
head = head->mNext;
}
}
基数排序
基数排序:一种多关键字的排序算法,可用桶排序实现。
int maxbit(int data[], int n) //辅助函数,求数据的最大位数
{
int maxData = data[0]; ///< 最大数
/// 先求出最大数,再求其位数,这样有原先依次每个数判断其位数,稍微优化点。
for (int i = 1; i < n; ++i)
{
if (maxData < data[i])
maxData = data[i];
}
int d = 1;
int p = 10;
while (maxData >= p)
{
//p *= 10; // Maybe overflow
maxData /= 10;
++d;
}
return d;
/* int d = 1; //保存最大的位数
int p = 10;
for(int i = 0; i < n; ++i)
{
while(data[i] >= p)
{
p *= 10;
++d;
}
}
return d;*/
}
void radixsort(int data[], int n) //基数排序
{
int d = maxbit(data, n);
int *tmp = new int[n];
int *count = new int[10]; //计数器
int i, j, k;
int radix = 1;
for(i = 1; i <= d; i++) //进行d次排序
{
for(j = 0; j < 10; j++)
count[j] = 0; //每次分配前清空计数器
for(j = 0; j < n; j++)
{
k = (data[j] / radix) % 10; //统计每个桶中的记录数
count[k]++;
}
for(j = 1; j < 10; j++)
count[j] = count[j - 1] + count[j]; //将tmp中的位置依次分配给每个桶
for(j = n - 1; j >= 0; j--) //将所有桶中记录依次收集到tmp中
{
k = (data[j] / radix) % 10;
tmp[count[k] - 1] = data[j];
count[k]--;
}
for(j = 0; j < n; j++) //将临时数组的内容复制到data中
data[j] = tmp[j];
radix = radix * 10;
}
delete []tmp;
delete []count;
}
今天的分享就到这里了,大家要好好学C++哟~
写在最后:对于准备学习C/C++编程的小伙伴,如果你想更好的提升你的编程核心能力(内功)不妨从现在开始!
C语言C++编程学习交流圈子,QQ群:904329806【点击进入】微信公众号:C语言编程学习基地
整理分享(多年学习的源码、项目实战视频、项目笔记,基础入门教程)
欢迎转行和学习编程的伙伴,利用更多的资料学习成长比自己琢磨更快哦!
编程学习书籍分享:
编程学习视频分享:
以上是关于C++基础语法梳理:算法丨十大排序算法的主要内容,如果未能解决你的问题,请参考以下文章