微软出品!FLAML:一款可以自动化机器学习过程的神器!

Posted Python学习与数据挖掘

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了微软出品!FLAML:一款可以自动化机器学习过程的神器!相关的知识,希望对你有一定的参考价值。

机器学习是我们使用一组算法解决来解决生活中问题的过程。创建机器学习模型很容易,但选择在泛化和性能方面都最适合的模型是一项艰巨的任务。

有多种机器学习算法可用于回归和分类,可根据我们要解决的问题来选择,但选择合适的模型是一个需要高计算成本、时间和精力的过程。

为解决上述问题,今天我给大家分享一款非常棒的工具包:FLAML,它是一个轻量级的开源 Python 库,有助于自动、高效地找出最佳机器学习模型,不仅速度快,节省时间,而且设计轻巧。

让我们详细的介绍一下它吧…

安装所需的库

我们将首先使用 pip 安装来安装 FLAML。下面给出的命令将使用 pip 安装。

pip install flaml

导入所需的库

在这一步中,我们将导入创建机器学习模型和下载数据集所需的所有库。

from flaml import AutoML

解决分类问题

现在我们将从解决分类问题开始。我们将在这里使用的数据是著名的 Iris 数据集,可以从 Seaborn 库轻松加载。让我们开始创建模型。

#Loading the Dataset
from sklearn.datasets import load_iris

为 Automl 创建实例很重要,同时也定义 Automl 设置,因此在这一步中,我们还将创建 Automl 实例并定义设置。

automl = AutoML()
automl_settings = {
    "time_budget": 10,  # in seconds
    "metric": 'accuracy',
    "task": 'classification'
}

接下来,我们将拆分数据并将其拟合到模型中。最后,我们还将使用模型进行预测并找到最佳模型。

X_train, y_train = load_iris(return_X_y=True)
# Train with labeled input data
automl.fit(X_train=X_train, y_train=y_train,
           **automl_settings)
print(automl.predict_proba(X_train).shape)
# Export the best model
print(automl.model)

在这里,我们可以清楚地看到 ExtraTreeEstimator 是此数据的最佳模型。现在让我们打印模型的最佳超参数和准确性。

print('Best ML leaner:', automl.best_estimator)
print('Best hyperparmeter config:', automl.best_config)
print('Best accuracy on validation data: {0:.4g}'.format(1-automl.best_loss))
print('Training duration of best run: {0:.4g} s'.format(automl.best_config_train_time))


同样,对于回归问题,我们也将遵循相同的过程。

解决回归问题

现在将解决一个回归问题。我们将在这里使用的数据是著名的波士顿数据集,可以从 Seaborn 库轻松加载。我们可以遵循与分类问题完全相同的过程。

from sklearn.datasets import load_boston

automl = AutoML()

automl_settings = {
    "time_budget": 10,  # in seconds
    "metric": 'r2',
    "task": 'regression'
}
X_train, y_train = load_boston(return_X_y=True)
# Train with labeled input data
automl.fit(X_train=X_train, y_train=y_train,
           **automl_settings)
# Predict
print(automl.predict(X_train).shape)
# Export the best model
print(automl.model)

print('Best ML leaner:', automl.best_estimator)
print('Best hyperparmeter config:', automl.best_config)
print('Best accuracy on validation data: {0:.4g}'.format(1-automl.best_loss))
print('Training duration of best run: {0:.4g} s'.format(automl.best_config_train_time))

在这里,我们也可以清楚地看到回归问题的最佳模型和超参数。同样,你可以对你关注的数据集执行此过程,并找到最佳模型和超参数。


技术交流

欢迎转载、收藏、有所收获点赞支持一下!

目前开通了技术交流群,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友

  • 方式①、发送如下图片至微信,长按识别,后台回复:加群;
  • 方式②、添加微信号:pythoner666,备注:来自CSDN
  • 方式③、微信搜索公众号:Python学习与数据挖掘,后台回复:加群

以上是关于微软出品!FLAML:一款可以自动化机器学习过程的神器!的主要内容,如果未能解决你的问题,请参考以下文章

微软 AutoML 框架之 FLAML | 环境配置安装分类/回归测试

微软太良心,这次对数据科学下手了

微软开源自动机器学习工具NNI安装与使用

AutoML之flaml:基于flaml框架对比lightgbm和xgboost模型进行自动化参数调优实现体内脂肪含量值回归预测案例之详细攻略

windows下使用scikit-learn学习机器学习——安装和配置

自动驾驶方程式赛车,微软发布机器学习开源框架 | AI一周学术