[LCA 树上差分 点差分 板子] Max Flow P
Posted 鱼竿钓鱼干
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[LCA 树上差分 点差分 板子] Max Flow P相关的知识,希望对你有一定的参考价值。
[LCA 树上差分 点差分] Max Flow P
题目
思路
比松鼠的新家更板的题目,可以作为点差分板子,所以多打些注释吧
原理可以看先前写的博客 树上差分与LCA
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<map>
#include<utility>
#include<set>
#include<vector>
#include<queue>
#include<stack>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int>PII;
#define endl '\\n'
//CHECK MULTIPLY INPUT !!!
//NEW DATA CLEAN !!!
//THINK > CODE !!!
const int N=3e5+10;
int n,k;
vector<int>root[N];
int dep[N],fa[N][25];
LL mark[N];
void dfs(int u,int v){
fa[u][0]=v;
dep[u]=dep[v]+1;
for(auto to:root[u]){
if(to!=v)dfs(to,u);
}
}
int LCA(int x,int y){
if(dep[x]<dep[y])swap(x,y);
while(dep[x]>dep[y])
x=fa[x][(int)log2(dep[x]-dep[y])];//LOG2可以优化一波
if(x==y)return y;
for(int i=20;i>=0;i--){
if(fa[x][i]!=fa[y][i]){//不一样就向上爬
x=fa[x][i],y=fa[y][i];
}
}
return fa[x][0];
}
void Point_Mark(int x,int y,LL v){//点差分标记
int lca=LCA(x,y);
mark[x]+=v,mark[y]+=v;
mark[lca]-=v,mark[fa[lca][0]]-=v;
}
int get_ans(int u,int v){//DFS统计子树权值大小就是树上差分的我还原过程
for(auto to:root[u]){
if(to!=v){
get_ans(to,u);
mark[u]+=mark[to];
}
}
}
int main(){
cin>>n>>k;
for(int i=1;i<n;i++){//建树
int x,y;cin>>x>>y;
root[x].push_back(y);
root[y].push_back(x);
}
dfs(1,0);//DFS预处理每个点的父亲和深度
for(int j=1;j<=20;j++)//别写成从1开始
for(int i=1;i<=n;i++)
fa[i][j]=fa[fa[i][j-1]][j-1];
while(k--){
int x,y;cin>>x>>y;
Point_Mark(x,y,1);
}
get_ans(1,0);
LL ans=0;
for(int i=1;i<=n;i++)ans=max(ans,mark[i]);
cout<<ans;
return 0;
}
以上是关于[LCA 树上差分 点差分 板子] Max Flow P的主要内容,如果未能解决你的问题,请参考以下文章