第2篇GooLeNet
Posted AI浩
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了第2篇GooLeNet相关的知识,希望对你有一定的参考价值。
摘要
我们在ImageNet大规模视觉识别挑战赛2014(ILSVRC14)上提出了一种代号为Inception的深度卷积神经网络结构,并在分类和检测上取得了新的最好结果。这个架构的主要特点是提高了网络内部计算资源的利用率。通过精心的手工设计,我们在增加了网络深度和广度的同时保持了计算预算不变。为了优化质量,架构的设计以赫布理论和多尺度处理直觉为基础。我们在ILSVRC14提交中应用的一个特例被称为GoogLeNet,一个22层的深度网络,其质量在分类和检测的背景下进行了评估。
1 引言
过去三年中,由于深度学习和卷积网络的发展[10],我们的目标分类和检测能力得到了显著提高。一个令人鼓舞的消息是,大部分的进步不仅仅是更强大硬件、更大数据集、更大模型的结果,而主要是新的想法、算法和网络结构改进的结果。例如,ILSVRC 2014竞赛中最靠前的输入除了用于检测目的的分类数据集之外,没有使用新的数据资源。我们在ILSVRC 2014中的GoogLeNet提交实际使用的参数只有两年前Krizhevsky等人[9]获胜结构参数的1/12,而结果明显更准确。在目标检测前沿,最大的收获不是来自于越来越大的深度网络的简单应用,而是来自于深度架构和经典计算机视觉的协同,像Girshick等人[6]的R-CNN算法那样。
另一个显著因素是随着移动和嵌入式设备的推动,我们的算法的效率很重要——尤其是它们的电力和内存使用。值得注意的是,正是包含了这个因素的考虑才得出了本文中呈现的深度架构设计,而不是单纯的为了提高准确率。对于大多数实验来说,模型被设计为在一次推断中保持15亿乘加的计算预算,所以最终它们不是单纯的学术好奇心&
以上是关于第2篇GooLeNet的主要内容,如果未能解决你的问题,请参考以下文章