Day368&369.RocketMQ应用 -RocketMQ
Posted 阿昌喜欢吃黄桃
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Day368&369.RocketMQ应用 -RocketMQ相关的知识,希望对你有一定的参考价值。
RocketMQ应用
一、普通消息
1、消息发送分类
Producer对于消息的发送方式也有多种选择,不同的方式会产生不同的系统效果。
- 同步发送消息
同步发送消息是指,Producer发出⼀条消息后,会在收到MQ返回的ACK之后才发下⼀条消息。该方式的消息可靠性最高,但消息发送效率太低。
- 异步发送消息
异步发送消息是指,Producer发出消息后无需等待MQ返回ACK,直接发送下⼀条消息。该方式的消息可靠性可以得到保障,消息发送效率也可以。
- 单向发送消息
单向发送消息是指,Producer仅负责发送消息,不等待、不处理MQ的ACK。该发送方式时MQ也不返回ACK。该方式的消息发送效率最高,但消息可靠性较差。
2、代码举例
- 创建工程
创建一个Maven的Java工程rocketmq-test
。
- 导入依赖
导入rocketmq的client依赖。注意直接RocketMQ的使用版本,阿昌这里使用的4.9.0
使用之前保证MQ服务启动
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<maven.compiler.source>1.8</maven.compiler.source>
<maven.compiler.target>1.8</maven.compiler.target>
</properties>
<dependencies>
<!--需要与RocketMQ版本相同-->
<dependency>
<groupId>org.apache.rocketmq</groupId>
<artifactId>rocketmq-client</artifactId>
<version>4.8.0</version>
</dependency>
</dependencies>
- 定义同步消息发送生产者
public class SyncProducer {
public static void main(String[] args) throws Exception {
// 创建一个producer,参数为Producer Group名称
DefaultMQProducer producer = new DefaultMQProducer("pg");
// 指定nameServer地址
producer.setNamesrvAddr("192.168.109.101:9876");
// 设置当发送失败时重试发送的次数,默认为2次
producer.setRetryTimesWhenSendFailed(3);
// 设置发送超时时限为5s,默认3s
producer.setSendMsgTimeout(5000);
// 开启生产者
producer.start();
// 生产并发送100条消息
for (int i = 0; i < 100; i++) {
byte[] body = ("Hi," + i).getBytes();
Message msg = new Message("someTopic", "someTag", body);
// 为消息指定key
msg.setKeys("key-" + i);
// 发送消息
SendResult sendResult = producer.send(msg);
System.out.println(sendResult);
}
// 关闭producer
producer.shutdown();
}
}
- 消息发送的状态
// 消息发送的状态
public enum SendStatus {
SEND_OK, // 发送成功
FLUSH_DISK_TIMEOUT, // 刷盘超时。当Broker设置的刷盘策略为同步刷盘时才可能出现这种异常状态。异步刷盘不会出现
FLUSH_SLAVE_TIMEOUT, // Slave同步超时。当Broker集群设置的Master-Slave的复制方式为同步复制时才可能出现这种异常状态。异步复制不会出现
SLAVE_NOT_AVAILABLE, // 没有可用的Slave。当Broker集群设置为Master-Slave的复制方式为同步复制时才可能出现这种异常状态。异步复制不会出现
}
- 定义异步消息发送生产者
public class AsyncProducer {
public static void main(String[] args) throws Exception {
DefaultMQProducer producer = new DefaultMQProducer("pg");
producer.setNamesrvAddr("192.168.109.101:9876");
// 指定异步发送失败后不进行重试发送
producer.setRetryTimesWhenSendAsyncFailed(0);
// 指定新创建的Topic的Queue数量为2,默认为4
producer.setDefaultTopicQueueNums(2);
producer.start();
for (int i = 0; i < 100; i++) {
byte[] body = ("Hi," + i).getBytes();
try {
Message msg = new Message("myTopicA", "myTag", body);
// 异步发送。指定回调
producer.send(msg, new SendCallback() {
// 当producer接收到MQ发送来的ACK后就会触发该回调方法的执行
@Override
public void onSuccess(SendResult sendResult) {
System.out.println(sendResult);
}
@Override
public void onException(Throwable e) {
e.printStackTrace();
}
});
} catch (Exception e) {
e.printStackTrace();
}
} // end-for
// sleep一会儿
// 由于采用的是异步发送,所以若这里不sleep,
// 则消息还未发送就会将producer给关闭,报错
TimeUnit.SECONDS.sleep(3);
producer.shutdown();
}
}
- 定义单向消息发送生产者
public class OnewayProducer {
public static void main(String[] args) throws Exception{
DefaultMQProducer producer = new DefaultMQProducer("pg");
producer.setNamesrvAddr("192.168.109.101:9876");
producer.start();
for (int i = 0; i < 10; i++) {
byte[] body = ("Hi," + i).getBytes();
Message msg = new Message("single", "someTag", body);
// 单向发送
producer.sendOneway(msg);
}
producer.shutdown();
System.out.println("producer shutdown");
}
}
- 定义消息消费者
public class SomeConsumer {
public static void main(String[] args) throws MQClientException {
// 定义一个pull消费者
// DefaultLitePullConsumer consumer = new DefaultLitePullConsumer("cg");
// 定义一个push消费者
DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("cg");
// 指定nameServer
consumer.setNamesrvAddr("192.168.109.101:9876");
// 指定从第一条消息开始消费
consumer.setConsumeFromWhere(ConsumeFromWhere.CONSUME_FROM_FIRST_OFFSET);
// 指定消费topic与tag
consumer.subscribe("someTopic", "*");
// 指定采用“广播模式”进行消费,默认为“集群模式”
// consumer.setMessageModel(MessageModel.BROADCASTING);
// 注册消息监听器
consumer.registerMessageListener(new MessageListenerConcurrently() {
// 一旦broker中有了其订阅的消息就会触发该方法的执行,
// 其返回值为当前consumer消费的状态
@Override
public ConsumeConcurrentlyStatus
consumeMessage(List<MessageExt> msgs,ConsumeConcurrentlyContext context) {
// 逐条消费消息
for (MessageExt msg : msgs) {
System.out.println(msg);
}
// 返回消费状态:消费成功
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
}
});
// 开启消费者消费
consumer.start();
System.out.println("Consumer Started");
}
}
二、顺序消息
1、什么是顺序消息
顺序消息指的是,严格按照消息的发送顺序
进行消费
的消息(FIFO)。
默认情况下生产者会把消息以Round Robin轮询方式发送到不同的Queue分区队列;而消费消息时会从多个Queue上拉取消息,这种情况下的发送和消费是不能保证顺序的。如果将消息仅发送到同一个Queue中,消费时也只从这个Queue上拉取消息,就严格保证了消息的顺序性。
2、为什么需要顺序消息
例如,现在有TOPIC ORDER_STATUS(订单状态),其下有4个Queue队列,该Topic中的不同消息用于描述当前订单的不同状态。假设订单有状态:未支付、已支付、发货中、发货成功、发货失败。
根据以上订单状态,生产者从时序上可以生成如下几个消息:
订单T0000001:未支付 --> 订单T0000001:已支付 --> 订单T0000001:发货中 --> 订单T0000001:发货失败消息发送到MQ中之后,Queue的选择如果采用轮询策略,消息在MQ的存储可能如下:
这种情况下,我们希望Consumer消费消息的顺序和我们发送是一致的,然而上述MQ的投递和消费方式,我们无法保证顺序是正确的。对于顺序异常的消息,Consumer即使设置有一定的状态容错,也不能完全处理好这么多种随机出现组合情况。
基于上述的情况,可以设计如下方案:对于相同订单号
的消息,通过一定的策略
,将其放置在一个Queue中
,然后消费者再采用一定的策略
(例如,一个线程独立处理一个queue,保证处理消息的顺序性),能够保证消费的顺序性
。
3、有序性分类
根据有序范围的不同,RocketMQ可以严格地保证两种消息的有序性:分区有序
与全局有序
。
- 全局有序
当发送和消费参与的Queue只有一个
时所保证的有序是整个Topic中消息的顺序, 称为全局有序
。
在
创建Topic时指定Queue的数量
。有三种指定方式:1)在
代码中创建
Producer时,可以指定其自动创建的Topic的Queue数量2)在RocketMQ
可视化控制台
中手动创建Topic时指定Queue数量3)使用
mqadmin命令
手动创建Topic时指定Queue数量
- 分区有序
如果有多个Queue
参与,其仅可保证在该Queue分区队列上的消息顺序,则称为分区有序
。
如何实现Queue的选择?
在定义Producer时我们可以指定
消息队列选择器
,而这个选择器是我们自己实现了MessageQueueSelector接口定义的。在定义选择器的选择算法时,一般需要使用选择key。这个选择key可以是消息key也可以是其它数据。但无论谁做选择key,都
不能重复,都是唯一
的。一般性的选择算法是,让选择key(或其hash值)与该Topic所包含的Queue的
数量取模
,其结果即为选择出的Queue的QueueId。取模算法存在一个问题:不同选择key与Queue数量取模结果可能会是相同的,即不同选择key的消息可能会出现在相同的Queue,即同一个Consuemr可能会消费到不同选择key的消息。
这个问题如何解决?一般性的作法是,从消息中获取到选择key,对其进行判断。若是当前Consumer需要消费的消息,则直接消费,否则,什么也不做。这种做法要求选择key要能够随着消息一起被Consumer获取到。此时使用消息key作为选择key是比较好的做法。
以上做法会不会出现如下新的问题呢?不属于那个Consumer的消息被拉取走了,那么应该消费该消息的Consumer是否还能再消费该消息呢?
同一个Queue中的消息不可能被同一个Group中的不同Consumer同时消费
。所以,消费现一个Queue的不同选择key的消息的Consumer一定属于不同的Group。而不同的Group中的Consumer间的消费是相互隔离的,互不影响的。
4、代码举例
public class OrderedProducer {
public static void main(String[] args) throws Exception {
DefaultMQProducer producer = new DefaultMQProducer("pg");
producer.setNamesrvAddr("192.168.109.101:9876");
producer.start();
for (int i = 0; i < 100; i++) {
Integer orderId = i;
byte[] body = ("Hi," + i).getBytes();
Message msg = new Message("TopicA", "TagA", body);
SendResult sendResult = producer.send(msg, new MessageQueueSelector() {
@Override
public MessageQueue select(List<MessageQueue> mqs,Message msg, Object arg){
Integer id = (Integer) arg;
int index = id % mqs.size();
return mqs.get(index);
}
}, orderId);
System.out.println(sendResult);
}
producer.shutdown();
}
}
三、延时消息
1、什么是延时消息
当消息写入到Broker后,在指定的时长后才可被消费处理的消息,称为延时消息
。
采用RocketMQ的延时消息可以实现定时任务
的功能,而无需使用定时器。典型的应用场景是,电商交易中超时未支付关闭订单的场景,12306平台订票超时未支付取消订票的场景。
在电商平台中,订单创建时会发送一条延迟消息。这条消息将会在30分钟后投递给后台业务系统(Consumer),后台业务系统收到该消息后会判断对应的订单是否已经完成支付。如果未完成,则取消订单,将商品再次放回到库存;如果完成支付,则忽略。
在12306平台中,车票预订成功后就会发送一条延迟消息。这条消息将会在45分钟后投递给后台业务系统(Consumer),后台业务系统收到该消息后会判断对应的订单是否已经完成支付。如果未完成,则取消预订,将车票再次放回到票池;如果完成支付,则忽略。
2、延时等级
延时消息的延迟时长不支持随意时长的延迟
,是通过特定的延迟等级来指定的。延时等级定义在RocketMQ服务
端的MessageStoreConfig类
中的如下变量中:
即,若指定的延时等级为3,则表示延迟时长为10s,即延迟等级是从1开始计数的。
当然,如果需要自定义的延时等级,可以通过在broker加载的配置中新增如下配置(例如下面增加了1天这个等级1d)。配置文件在RocketMQ安装目录下的conf目录中。
messageDelayLevel = 1s 5s 10s 30s 1m 2m 3m 4m 5m 6m 7m 8m 9m 10m 20m 30m 1h 2h 1d
3、延时消息实现原理
具体实现方案是:
-
修改消息
Producer将消息发送到Broker后,Broker会首先将消息写入到commitlog文件,然后需要将其分发到相应的consumequeue。不过,在分发之前,系统会先判断消息中是否带有延时等级。若没有,则直接正常分发;若有则需要经历一个复杂的过程:
- 修改消息的Topic为SCHEDULE_TOPIC_XXXX
- 根据延时等级,在consumequeue目录中SCHEDULE_TOPIC_XXXX主题下创建出相应的queueId
目录与consumequeue文件(如果没有这些目录与文件的话)。
延迟等级delayLevel与queueId的对应关系为queueId = delayLevel -1
需要注意,在创建queueId目录时,并
不是一次性地将所有延迟等级对应的目录全部创建完毕
,而是用到哪个延迟等级创建哪个目录
-
修改消息索引单元内容。索引单元中的Message Tag HashCode部分原本存放的是消息的Tag的Hash值。
现修改为消息的投递时间
。投递时间是指该消息被重新修改为原Topic后再次被写入到commitlog中的时间。投递时间 = 消息存储时间 + 延时等级时间
。消息存储时间指的是消息被发送到Broker时的时间戳。 -
将消息索引写入到SCHEDULE_TOPIC_XXXX主题下相应的consumequeue中
SCHEDULE_TOPIC_XXXX目录中各个延时等级Queue中的消息是如何排序的?
是按照消息投递时间排序的
。一个Broker中同一等级的所有延时消息会被写入到consumequeue目录中SCHEDULE_TOPIC_XXXX目录下相同Queue中。即一个Queue中消息投递时间的延迟等级时间是相同的。那么投递时间就取决于于消息存储时间
了。即按照消息被发送到Broker的时间进行排序的。
- 投递延时消息
Broker内部有⼀个延迟消息服务类ScheuleMessageService
,其会消费SCHEDULE_TOPIC_XXXX中的消息,即按照每条消息的投递时间,将延时消息投递到⽬标Topic中。不过,在投递之前会从commitlog中将原来写入的消息再次读出,并将其原来的延时等级设置为0
,即原消息变为了一条不延迟的普通消息。然后再次将消息投递到目标Topic中。
ScheuleMessageService在Broker启动时,会创建并启动一个定时器TImer,用于执行相应的定时任务。系统会根据延时等级的个数,定义相应数量的TimerTask,每个TimerTask负责一个延迟等级消息的消费与投递。每个TimerTask都会检测相应Queue队列的第一条消息是否到期。若第一条消息未到期,则后面的所有消息更不会到期(
消息是按照投递时间排序的
);若第一条消息到期了,则将该消息投递到目标Topic,即消费该消息。
- 将消息重新写入commitlog
延迟消息服务类ScheuleMessageService将延迟消息再次发送给了commitlog,并再次形成新的消息索引条目,分发到相应Queue。
这其实就是一次普通消息发送。只不过这次的消息Producer是延迟消息服务类ScheuleMessageService。
4、代码举例
- 定义DelayProducer类
public class DelayProducer {
public static void main(String[] args) throws Exception {
DefaultMQProducer producer = new DefaultMQProducer("pg");
producer.setNamesrvAddr("192.168.109.101:9876");
producer.start();
for (int i = 0; i < 10; i++) {
byte[] body = ("Hi," + i).getBytes();
Message msg = new Message("TopicB", "someTag", body);
// 指定消息延迟等级为3级,即延迟10s
// msg.setDelayTimeLevel(3);
SendResult sendResult = producer.send(msg);
// 输出消息被发送的时间
System.out.print(new SimpleDateFormat("mm:ss").format(new Date()));
System.out.println(" ," + sendResult);
}
producer.shutdown();
}
}
- 定义OtherConsumer类
public class OtherConsumer {
public static void main(String[] args) throws MQClientException {
DefaultMQPushConsumer consumer = new
DefaultMQPushConsumer("cg");
consumer.setNamesrvAddr("192.168.109.101:9876");
consumer.setConsumeFromWhere(ConsumeFromWhere.CONSUME_FROM_FIRST_OFFSET
);
consumer.subscribe("TopicB", "*");
consumer.registerMessageListener(new MessageListenerConcurrently() {
@Override
public ConsumeConcurrentlyStatus
consumeMessage(List<MessageExt> msgs, ConsumeConcurrentlyContext context) {
for (MessageExt msg : msgs) {
// 输出消息被消费的时间
System.out.print(new SimpleDateFormat("mm:ss").format(new Date()));
System.out.println(" ," + msg);
}
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
}
});
consumer.start();
System.out.println("Consumer Started");
}
}
四、事务消息
1、问题引入
这里的一个需求场景是:工行用户A向建行用户B转账1万元。
我们可以使用同步消息来处理该需求场景:
- 工行系统发送一个给B增款1万元的同步消息M给Broker
- 消息被Broker成功接收后,向工行系统发送成功ACK
- 工行系统收到成功ACK后从用户A中扣款1万元
- 建行系统从Broker中获取到消息M
- 建行系统消费消息M,即向用户B中增加1万元
这其中是有问题的:若第3步中的扣款操作失败,但消息已经成功发送到了Broker。对于MQ来说,只要消息写入成功,那么这个消息就可以被消费。此时建行系统中用户B增加了1
以上是关于Day368&369.RocketMQ应用 -RocketMQ的主要内容,如果未能解决你的问题,请参考以下文章
368.[LeetCode] Largest Divisible Subset
OAuthException (#368) 尝试的操作被视为滥用或以其他方式被禁止