2021-08-13
Posted 信盈达-周老师
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了2021-08-13相关的知识,希望对你有一定的参考价值。
开源一个SPEEX全双工数字对讲机。用NRF24L01实现了全双工通信,就像打电话一样,目前实现的只是点对点,直线距离测试最远有300M,用了网上那种加了PA的模块。电路采用STM32F103R作为主控制芯片。
注意:
8k采样,是1S/1KB 的数据量,也就是1MS一个B,压缩率真的很高。音质和打电话差不多,噪音很小。其实要传的数据量很小,1S/KB 的数据量,这里选择2.4G的原因是因为要用应答包携带数据来回传数据,不然收发模式切换会很慢,达不到全双工的要求。
无线数字全双工对讲机电路:
无线数字全双工对讲机源码截图:
和大家分享一下SpeexLib使用中的一些小技巧:
1.先讲一讲这个东西怎么用
其实讲到这里,很多人都会想到ST有提供的现成的基于F103系列的库,没错我就是从这个库里面研究起来的,这个库有他的优点:ST专门对几个滤波器函数优化过,使用汇编写的,删除了一些子模式,并且使用定点运算,再这里先贴一下被ST优化过得那几个函数名称:filter_mem16(), inner_prod(),vq_nbest()等等,之所以这样才得以在103上面可以运行起来,缺点嘛:就是被阉割过了,只能使用一个模式,你如果想要更高的语音质量就别想用这个库了,它里面默认的质量是4,最好的质量等级是10,,具体的可以看下面的那个结构体:
初始值
其实如果真做语音压缩一类的话,我推荐用F407,开启FPU。或者DSP,优点嘛有很多,其中我认为最有用的就是里面的VBR了,可以做动态变比,也就是当你有语音信息的时候就会编出比较多的数据,没有语音信息时编出的数据非常少,只有1个Byte,这个也就引出了后面的DTX,它的意思就是说你没有语音信号的时候可以不传数据,想想这是不是很方便呢。好这个先提到这里,后面还有预处理什么的,这个VBR就放到后面来讲。有了上面这些参数的定义我们可以初始化到Speex里面去了,可以这样操作:
在这里特别提醒一下大家,这个库使用了一些内存分配,需要从堆里面去开辟内存,所以你的程序如果一运行到初始化就进入硬件错误,没关系,堆开大点就好了,一般对于编码解码来说 :0x8000的大小就可以了。后面说说怎么编码吧:
这里注意这个Nbyte,不要被ST提供的那个库给迷惑了,正确的用法是这样。
解码是这样:
这里有一些代码是用于缓存语音的,所以自己写了一个环形队列,为了方便大家阅读,我把代码贴出来:
/**
******************************************************************************
* @file MemQueue.C
* @author Luoxianhui R&D Driver Software Team
* @version V1.0.0
* @date 06/09/2013
* @brief MemQueue»·ÐζÓÁлº´æ
******************************************************************************
/
/ Includes ------------------------------------------------------------------*/
#include “MemQueue.h”
#include “define.h”
#include “includes.h”
/* @addtogroup MemQueue_Driver
* @{
*/
/** @addtogroup Mem
* @{
*/
/* Private typedef -----------------------------------------------------------/
/ Private define ------------------------------------------------------------/
/ Private macro -------------------------------------------------------------/
/ Private variables ---------------------------------------------------------*/
SqQueueChar TestQueue;
// SqQueueChar RxQueue;
// SqQueueChar TxQueue;
SqJitterQueueChar RxQueue;
SqQueueShort AdQueue;
SqQueueShort DaQueue;
/* Private function prototypes -----------------------------------------------/
/ Private functions ---------------------------------------------------------*/
void InitQueueChar(SqQueueChar *Q, INT32U F, INT32U E);
INT16U QueueLenthChar(SqQueueChar *Q);
SqQueueSta EnQueueChar(SqQueueChar *Q, INT8U Data);
SqQueueSta DeQueueChar(SqQueueChar *Q, INT8U *Data);
SqQueueSta EnQueueStrChar(SqQueueChar *Q, INT8U *Data,INT16U No);
SqQueueSta DeQueueStrChar(SqQueueChar *Q, INT8U *Data,INT16U No);
void InitQueueShort(SqQueueShort *Q, INT32U F, INT32U E);
INT16U QueueLenthShort(SqQueueShort *Q);
SqQueueSta EnQueueShort(SqQueueShort *Q, INT16S Data);
SqQueueSta DeQueueShort(SqQueueShort *Q, INT16S *Data);
SqQueueSta EnQueueStrShort(SqQueueShort *Q, INT16S *Data,INT16U No);
SqQueueSta DeQueueStrShort(SqQueueShort *Q, INT16S *Data,INT16U No);
void InitJitterQueueChar(SqJitterQueueChar *Q, INT32U F, INT32U E);
INT16U JitterQueueLenthChar(SqJitterQueueChar *Q);
SqQueueSta DeJitterQueueChar(SqJitterQueueChar *Q, INT8U *Data, INT16U *No);
SqQueueSta EnJitterQueueChar(SqJitterQueueChar *Q, INT8U *Data, INT16U No);
void InitQueueShort(SqQueueShort *Q, INT32U F, INT32U E)
{
Q->sRear = 0;
Q->sFront = 0;
Q->BufFullShortScal = F;
Q->BufEmptyShortScal = E;
}
INT16U QueueLenthShort(SqQueueShort *Q)
{
return(((Q->sRear) - (Q->sFront) + BufSizeShort) % BufSizeShort);
}
SqQueueSta EnQueueShort(SqQueueShort *Q, INT16S Data)
{
if((((Q->sRear)+1) % BufSizeShort) == (Q->sFront)) return FALSE;
(*Q).gBuf[Q->sRear] = Data;
Q->sRear = (Q->sRear + 1) % BufSizeShort;
return TRUE;
}
SqQueueSta DeQueueShort(SqQueueShort *Q, INT16S *Data)
{
if(Q->sRear == Q->sFront) return FALSE;
*Data = (*Q).gBuf[Q->sFront];
Q->sFront = (Q->sFront + 1) % BufSizeShort;
return TRUE;
}
SqQueueSta EnQueueStrShort(SqQueueShort *Q, INT16S *Data,INT16U No)
{
OS_CPU_SR cpu_sr=0;
INT16U i = 0;
INT16U Len = 0;
Len = QueueLenthShort(Q);
if(Len >= Q->BufFullShortScal)
{
Q->BufEmpty = BufFull;
}
if(Len <= Q->BufEmptyShortScal)
{
Q->BufEmpty = BufEmpty;
}
if( Len >= (BufSizeShort-No)) return FALSE;
OS_ENTER_CRITICAL();
for(i=0; i<No; i++)
{
EnQueueShort(Q,Data[i]);
}
OS_EXIT_CRITICAL();
return TRUE;
}
SqQueueSta DeQueueStrShort(SqQueueShort *Q, INT16S *Data,INT16U No)
{
INT16U i = 0;
INT16U Len = 0;
OS_CPU_SR cpu_sr=0;
Len = QueueLenthShort(Q);
if(Len >= Q->BufFullShortScal)
{
Q->BufEmpty = BufFull;
}
if(Len <= Q->BufEmptyShortScal)
{
Q->BufEmpty = BufEmpty;
}
if(Len <= No) return FALSE;
OS_ENTER_CRITICAL();
for(i=0; i<No; i++)
{
DeQueueShort(Q,&(Data[i]));
}
OS_EXIT_CRITICAL();
return TRUE;
}
void InitQueueChar(SqQueueChar *Q, INT32U F, INT32U E)
{
Q->sRear = 0;
Q->sFront = 0;
Q->BufFullCharScal = F;
Q->BufEmptyCharScal = E;
}
INT16U QueueLenthChar(SqQueueChar *Q)
{
return(((Q->sRear) - (Q->sFront) + BufSizeChar) % BufSizeChar);
}
SqQueueSta EnQueueChar(SqQueueChar *Q, INT8U Data)
{
if((((Q->sRear)+1) % BufSizeChar) == (Q->sFront)) return FALSE;
(*Q).gBuf[Q->sRear] = Data;
Q->sRear = (Q->sRear + 1) % BufSizeChar;
return TRUE;
}
SqQueueSta DeQueueChar(SqQueueChar *Q, INT8U *Data)
{
if(Q->sRear == Q->sFront) return FALSE;
*Data = (*Q).gBuf[Q->sFront];
Q->sFront = (Q->sFront + 1) % BufSizeChar;
return TRUE;
}
SqQueueSta EnQueueStrChar(SqQueueChar *Q, INT8U *Data,INT16U No)
{
INT16U i = 0;
INT16U Len = 0;
OS_CPU_SR cpu_sr=0;
Len = QueueLenthChar(Q);
if(Len >= Q->BufFullCharScal)
{
Q->BufEmpty = BufFull;
}
if(Len <= Q->BufEmptyCharScal)
{
Q->BufEmpty = BufEmpty;
}
if(Len >= (BufSizeChar-No)) return FALSE;
OS_ENTER_CRITICAL();
for(i=0; i<No; i++)
{
EnQueueChar(Q,Data[i]);
}
OS_EXIT_CRITICAL();
return TRUE;
}
SqQueueSta DeQueueStrChar(SqQueueChar *Q, INT8U *Data,INT16U No)
{
INT16U i = 0;
INT16U Len = 0;
OS_CPU_SR cpu_sr=0;
Len = QueueLenthChar(Q);
if(Len >= Q->BufFullCharScal)
{
Q->BufEmpty = BufFull;
}
if(Len <= Q->BufEmptyCharScal)
{
Q->BufEmpty = BufEmpty;
}
if(Len <= No) return FALSE;
OS_ENTER_CRITICAL();
for(i=0; i<No; i++)
{
DeQueueChar(Q,&(Data[i]));
}
OS_EXIT_CRITICAL();
return TRUE;
}
void InitJitterQueueChar(SqJitterQueueChar *Q, INT32U F, INT32U E)
{
Q->sRear = 0;
Q->sFront = 0;
Q->BufFullJitterCharScal = F;
Q->BufEmptyJitterCharScal = E;
}
INT16U JitterQueueLenthChar(SqJitterQueueChar *Q)
{
return(((Q->sRear) - (Q->sFront) + BufSizeJitterChar) % BufSizeJitterChar);
}
SqQueueSta EnJitterQueueChar(SqJitterQueueChar *Q, INT8U *Data, INT16U No)
{
INT16U i = 0;
INT16U Len = 0;
if((((Q->sRear)+1) % BufSizeJitterChar) == (Q->sFront)) return FALSE;
Len = JitterQueueLenthChar(Q);
if(Len >= Q->BufFullJitterCharScal)
{
Q->BufEmpty = BufFull;
}
if(Len <= Q->BufEmptyJitterCharScal)
{
Q->BufEmpty = BufEmpty;
}
(*Q).gBuf[Q->sRear][0] = No;
for(i=0; i<No; i++)
{
(*Q).gBuf[Q->sRear][i + 1] = Data[i];
}
Q->sRear = (Q->sRear + 1) % BufSizeJitterChar;
return TRUE;
}
SqQueueSta DeJitterQueueChar(SqJitterQueueChar *Q, INT8U *Data, INT16U *No)
{
INT16U i = 0;
INT16U Len = 0;
if(Q->sRear == Q->sFront) return FALSE;
Len = JitterQueueLenthChar(Q);
if(Len >= Q->BufFullJitterCharScal)
{
Q->BufEmpty = BufFull;
}
if(Len <= Q->BufEmptyJitterCharScal)
{
Q->BufEmpty = BufEmpty;
}
*No = (*Q).gBuf[Q->sFront][0];
for(i=0; i<(*Q).gBuf[Q->sFront][0]; i++)
{
Data[i] = (*Q).gBuf[Q->sFront][i + 1];
}
Q->sFront = (Q->sFront + 1) % BufSizeJitterChar;
return TRUE;
}
下面是头文件
#ifndef MEMQUEUE_H
#define MEMQUEUE_H
#include “define.h”
#define BufSizeChar 2160
#define BufSizeShort 3200
#define BufFullChar BufSizeChar - 920
#define BufFullShort BufSizeShort - 960
#define BufEmptyChar 60
#define BufEmptyShort 640
#define BufSizeJitterChar 250
#define FramSizeJitterChar 70
#define BufFullJitterChar BufSizeJitterChar - 200
#define BufEmptyJitterChar 10
typedef enum {FALSE, TRUE, BufFull, BufEmpty} SqQueueSta;
typedef struct _SqJitterQueueChar
{
INT8U gBuf[BufSizeJitterChar][FramSizeJitterChar];
INT16U sFront;
INT16U sRear;
INT32U BufFullJitterCharScal;
INT32U BufEmptyJitterCharScal;
SqQueueSta BufEmpty;
}SqJitterQueueChar;
typedef struct _SqQueueChar
{
INT8U gBuf[BufSizeChar];
INT16U sFront;
INT16U sRear;
INT32U BufFullCharScal;
INT32U BufEmptyCharScal;
SqQueueSta BufEmpty;
}SqQueueChar;
typedef struct _SqQueueShort
{
INT16S gBuf[BufSizeShort];
INT16U sFront;
INT16U sRear;
INT32U BufFullShortScal;
INT32U BufEmptyShortScal;
SqQueueSta BufEmpty;
}SqQueueShort;
extern SqQueueChar TestQueue;
// extern SqQueueChar RxQueue;
// extern SqQueueChar TxQueue;
extern SqJitterQueueChar RxQueue;
// extern SqJitterQueueChar TxQueue;
extern SqQueueShort AdQueue;
extern SqQueueShort DaQueue;
void InitQueueChar(SqQueueChar *Q, INT32U F, INT32U E);
INT16U QueueLenthChar(SqQueueChar *Q);
SqQueueSta EnQueueChar(SqQueueChar *Q, INT8U Data);
SqQueueSta DeQueueChar(SqQueueChar *Q, INT8U *Data);
SqQueueSta EnQueueStrChar(SqQueueChar *Q, INT8U *Data,INT16U No);
SqQueueSta DeQueueStrChar(SqQueueChar *Q, INT8U *Data,INT16U No);
void InitQueueShort(SqQueueShort *Q, INT32U F, INT32U E);
INT16U QueueLenthShort(SqQueueShort *Q);
SqQueueSta EnQueueShort(SqQueueShort *Q, INT16S Data);
SqQueueSta DeQueueShort(SqQueueShort *Q, INT16S *Data);
SqQueueSta EnQueueStrShort(SqQueueShort *Q, INT16S *Data,INT16U No);
SqQueueSta DeQueueStrShort(SqQueueShort *Q, INT16S *Data,INT16U No);
void InitJitterQueueChar(SqJitterQueueChar *Q, INT32U F, INT32U E);
INT16U JitterQueueLenthChar(SqJitterQueueChar *Q);
SqQueueSta DeJitterQueueChar(SqJitterQueueChar *Q, INT8U *Data, INT16U *No);
SqQueueSta EnJitterQueueChar(SqJitterQueueChar *Q, INT8U *Data, INT16U No);
#endif
今天先说到这里,后续,希望对大家有用。
免责声明:本文素材来源网络,版权归原作者所有。如涉及作品版权问题,请与我联系删除。
以上是关于2021-08-13的主要内容,如果未能解决你的问题,请参考以下文章