SpringBoot+Kafka+ELK 完成海量日志收集(超详细)

Posted Java知音_

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了SpringBoot+Kafka+ELK 完成海量日志收集(超详细)相关的知识,希望对你有一定的参考价值。

点击关注公众号,实用技术文章及时了解

来源:jiandansuifeng.blog.csdn.net/

article/details/107361190

整体流程大概如下:

服务器准备

在这先列出各服务器节点,方便同学们在下文中对照节点查看相应内容

SpringBoot项目准备

引入log4j2替换SpringBoot默认log,demo项目结构如下:

pom

<dependencies>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-web</artifactId>
        <!--  排除spring-boot-starter-logging -->
        <exclusions>
            <exclusion>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-starter-logging</artifactId>
            </exclusion>
        </exclusions>
    </dependency> 
 <!-- log4j2 -->
 <dependency>
     <groupId>org.springframework.boot</groupId>
     <artifactId>spring-boot-starter-log4j2</artifactId>
 </dependency> 
   <dependency>
     <groupId>com.lmax</groupId>
     <artifactId>disruptor</artifactId>
     <version>3.3.4</version>
   </dependency> 
</dependencies> 

log4j2.xml

<?xml version="1.0" encoding="UTF-8"?>
<Configuration status="INFO" schema="Log4J-V2.0.xsd" monitorInterval="600" >
    <Properties>
        <Property name="LOG_HOME">logs</Property>
        <property name="FILE_NAME">collector</property>
        <property name="patternLayout">[%d{yyyy-MM-dd'T'HH:mm:ss.SSSZZ}] [%level{length=5}] [%thread-%tid] [%logger] [%X{hostName}] [%X{ip}] [%X{applicationName}] [%F,%L,%C,%M] [%m] ## '%ex'%n</property>
    </Properties>
    <Appenders>
        <Console name="CONSOLE" target="SYSTEM_OUT">
            <PatternLayout pattern="${patternLayout}"/>
        </Console>  
        <RollingRandomAccessFile name="appAppender" fileName="${LOG_HOME}/app-${FILE_NAME}.log" filePattern="${LOG_HOME}/app-${FILE_NAME}-%d{yyyy-MM-dd}-%i.log" >
          <PatternLayout pattern="${patternLayout}" />
          <Policies>
              <TimeBasedTriggeringPolicy interval="1"/>
              <SizeBasedTriggeringPolicy size="500MB"/>
          </Policies>
          <DefaultRolloverStrategy max="20"/>         
        </RollingRandomAccessFile>
        <RollingRandomAccessFile name="errorAppender" fileName="${LOG_HOME}/error-${FILE_NAME}.log" filePattern="${LOG_HOME}/error-${FILE_NAME}-%d{yyyy-MM-dd}-%i.log" >
          <PatternLayout pattern="${patternLayout}" />
          <Filters>
              <ThresholdFilter level="warn" onMatch="ACCEPT" onMismatch="DENY"/>
          </Filters>              
          <Policies>
              <TimeBasedTriggeringPolicy interval="1"/>
              <SizeBasedTriggeringPolicy size="500MB"/>
          </Policies>
          <DefaultRolloverStrategy max="20"/>         
        </RollingRandomAccessFile>            
    </Appenders>
    <Loggers>
        <!-- 业务相关 异步logger -->
        <AsyncLogger name="com.bfxy.*" level="info" includeLocation="true">
          <AppenderRef ref="appAppender"/>
        </AsyncLogger>
        <AsyncLogger name="com.bfxy.*" level="info" includeLocation="true">
          <AppenderRef ref="errorAppender"/>
        </AsyncLogger>       
        <Root level="info">
            <Appender-Ref ref="CONSOLE"/>
            <Appender-Ref ref="appAppender"/>
            <AppenderRef ref="errorAppender"/>
        </Root>         
    </Loggers>
</Configuration>

IndexController

测试Controller,用以打印日志进行调试

@Slf4j
@RestController
public class IndexController {

 @RequestMapping(value = "/index")
 public String index() {
  InputMDC.putMDC();
  
  log.info("我是一条info日志");
  
  log.warn("我是一条warn日志");

  log.error("我是一条error日志");
  
  return "idx";
 }


 @RequestMapping(value = "/err")
 public String err() {
  InputMDC.putMDC();
  try {
   int a = 1/0;
  } catch (Exception e) {
   log.error("算术异常", e);
  }
  return "err";
 }
 
}

InputMDC

用以获取log中的[%X{hostName}][%X{ip}][%X{applicationName}]三个字段值

@Component
public class InputMDC implements EnvironmentAware {

 private static Environment environment;
 
 @Override
 public void setEnvironment(Environment environment) {
  InputMDC.environment = environment;
 }
 
 public static void putMDC() {
  MDC.put("hostName", NetUtil.getLocalHostName());
  MDC.put("ip", NetUtil.getLocalIp());
  MDC.put("applicationName", environment.getProperty("spring.application.name"));
 }

}

NetUtil

public class NetUtil {   
 
 public static String normalizeAddress(String address){
  String[] blocks = address.split("[:]");
  if(blocks.length > 2){
   throw new IllegalArgumentException(address + " is invalid");
  }
  String host = blocks[0];
  int port = 80;
  if(blocks.length > 1){
   port = Integer.valueOf(blocks[1]);
  } else {
   address += ":"+port; //use default 80
  } 
  String serverAddr = String.format("%s:%d", host, port);
  return serverAddr;
 }
 
 public static String getLocalAddress(String address){
  String[] blocks = address.split("[:]");
  if(blocks.length != 2){
   throw new IllegalArgumentException(address + " is invalid address");
  } 
  String host = blocks[0];
  int port = Integer.valueOf(blocks[1]);
  
  if("0.0.0.0".equals(host)){
   return String.format("%s:%d",NetUtil.getLocalIp(), port);
  }
  return address;
 }
 
 private static int matchedIndex(String ip, String[] prefix){
  for(int i=0; i<prefix.length; i++){
   String p = prefix[i];
   if("*".equals(p)){ //*, assumed to be IP
    if(ip.startsWith("127.") ||
       ip.startsWith("10.") || 
       ip.startsWith("172.") ||
       ip.startsWith("192.")){
     continue;
    }
    return i;
   } else {
    if(ip.startsWith(p)){
     return i;
    }
   } 
  }
  
  return -1;
 }
 
 public static String getLocalIp(String ipPreference) {
  if(ipPreference == null){
   ipPreference = "*>10>172>192>127";
  }
  String[] prefix = ipPreference.split("[> ]+");
  try {
   Pattern pattern = Pattern.compile("[0-9]+\\\\.[0-9]+\\\\.[0-9]+\\\\.[0-9]+");
   Enumeration<NetworkInterface> interfaces = NetworkInterface.getNetworkInterfaces();
   String matchedIp = null;
   int matchedIdx = -1;
   while (interfaces.hasMoreElements()) {
    NetworkInterface ni = interfaces.nextElement();
    Enumeration<InetAddress> en = ni.getInetAddresses(); 
    while (en.hasMoreElements()) {
     InetAddress addr = en.nextElement();
     String ip = addr.getHostAddress();  
     Matcher matcher = pattern.matcher(ip);
     if (matcher.matches()) {  
      int idx = matchedIndex(ip, prefix);
      if(idx == -1) continue;
      if(matchedIdx == -1){
       matchedIdx = idx;
       matchedIp = ip;
      } else {
       if(matchedIdx>idx){
        matchedIdx = idx;
        matchedIp = ip;
       }
      }
     } 
    } 
   } 
   if(matchedIp != null) return matchedIp;
   return "127.0.0.1";
  } catch (Exception e) { 
   return "127.0.0.1";
  }
 }
 
 public static String getLocalIp() {
  return getLocalIp("*>10>172>192>127");
 }
 
 public static String remoteAddress(SocketChannel channel){
  SocketAddress addr = channel.socket().getRemoteSocketAddress();
  String res = String.format("%s", addr);
  return res;
 }
 
 public static String localAddress(SocketChannel channel){
  SocketAddress addr = channel.socket().getLocalSocketAddress();
  String res = String.format("%s", addr);
  return addr==null? res: res.substring(1);
 }
 
 public static String getPid(){
  RuntimeMXBean runtime = ManagementFactory.getRuntimeMXBean();
        String name = runtime.getName();
        int index = name.indexOf("@");
        if (index != -1) {
            return name.substring(0, index);
        }
  return null;
 }
 
 public static String getLocalHostName() {
        try {
            return (InetAddress.getLocalHost()).getHostName();
        } catch (UnknownHostException uhe) {
            String host = uhe.getMessage();
            if (host != null) {
                int colon = host.indexOf(':');
                if (colon > 0) {
                    return host.substring(0, colon);
                }
            }
            return "UnknownHost";
        }
    }
}

启动项目,访问/index/ero接口,可以看到项目中生成了app-collector.logerror-collector.log两个日志文件

我们将Springboot服务部署在192.168.11.31这台机器上。

Kafka安装和启用

kafka下载地址:

http://kafka.apache.org/downloads.html

kafka安装步骤:首先kafka安装需要依赖与zookeeper,所以小伙伴们先准备好zookeeper环境(三个节点即可),然后我们来一起构建kafka broker。

## 解压命令:
tar -zxvf kafka_2.12-2.1.0.tgz -C /usr/local/
## 改名命令:
mv kafka_2.12-2.1.0/ kafka_2.12
## 进入解压后的目录,修改server.properties文件:
vim /usr/local/kafka_2.12/config/server.properties
## 修改配置:
broker.id=0
port=9092
host.name=192.168.11.51
advertised.host.name=192.168.11.51
log.dirs=/usr/local/kafka_2.12/kafka-logs
num.partitions=2
zookeeper.connect=192.168.11.111:2181,192.168.11.112:2181,192.168.11.113:2181

## 建立日志文件夹:
mkdir /usr/local/kafka_2.12/kafka-logs

##启动kafka:
/usr/local/kafka_2.12/bin/kafka-server-start.sh /usr/local/kafka_2.12/config/server.properties &

创建两个topic

## 创建topic
kafka-topics.sh --zookeeper 192.168.11.111:2181 --create --topic app-log-collector --partitions 1  --replication-factor 1
kafka-topics.sh --zookeeper 192.168.11.111:2181 --create --topic error-log-collector --partitions 1  --replication-factor 1 

我们可以查看一下topic情况

kafka-topics.sh --zookeeper 192.168.11.111:2181 --topic app-log-test --describe

可以看到已经成功启用了app-log-collectorerror-log-collector两个topic

filebeat安装和启用

filebeat下载

cd /usr/local/software
tar -zxvf filebeat-6.6.0-linux-x86_64.tar.gz -C /usr/local/
cd /usr/local
mv filebeat-6.6.0-linux-x86_64/ filebeat-6.6.0

配置filebeat,可以参考下方yml配置文件

vim /usr/local/filebeat-5.6.2/filebeat.yml
###################### Filebeat Configuration Example #########################
filebeat.prospectors:

- input_type: log

  paths:
    ## app-服务名称.log, 为什么写死,防止发生轮转抓取历史数据
    - /usr/local/logs/app-collector.log
  #定义写入 ES 时的 _type 值
  document_type: "app-log"
  multiline:
    #pattern: '^\\s*(\\d{4}|\\d{2})\\-(\\d{2}|[a-zA-Z]{3})\\-(\\d{2}|\\d{4})'   # 指定匹配的表达式(匹配以 2017-11-15 08:04:23:889 时间格式开头的字符串)
    pattern: '^\\['                              # 指定匹配的表达式(匹配以 "{ 开头的字符串)
    negate: true                                # 是否匹配到
    match: after                                # 合并到上一行的末尾
    max_lines: 2000                             # 最大的行数
    timeout: 2s                                 # 如果在规定时间没有新的日志事件就不等待后面的日志
  fields:
    logbiz: collector
    logtopic: app-log-collector   ## 按服务划分用作kafka topic
    evn: dev

- input_type: log

  paths:
    - /usr/local/logs/error-collector.log
  document_type: "error-log"
  multiline:
    #pattern: '^\\s*(\\d{4}|\\d{2})\\-(\\d{2}|[a-zA-Z]{3})\\-(\\d{2}|\\d{4})'   # 指定匹配的表达式(匹配以 2017-11-15 08:04:23:889 时间格式开头的字符串)
    pattern: '^\\['                              # 指定匹配的表达式(匹配以 "{ 开头的字符串)
    negate: true                                # 是否匹配到
    match: after                                # 合并到上一行的末尾
    max_lines: 2000                             # 最大的行数
    timeout: 2s                                 # 如果在规定时间没有新的日志事件就不等待后面的日志
  fields:
    logbiz: collector
    logtopic: error-log-collector   ## 按服务划分用作kafka topic
    evn: dev
    
output.kafka:
  enabled: true
  hosts: ["192.168.11.51:9092"]
  topic: '%{[fields.logtopic]}'
  partition.hash:
    reachable_only: true
  compression: gzip
  max_message_bytes: 1000000
  required_acks: 1
logging.to_files: true

filebeat启动:

检查配置是否正确

cd /usr/local/filebeat-6.6.0
./filebeat -c filebeat.yml -configtest
## Config OK

启动filebeat

/usr/local/filebeat-6.6.0/filebeat &

检查是否启动成功

ps -ef | grep filebeat

可以看到filebeat已经启动成功

然后我们访问192.168.11.31:8001/index和192.168.11.31:8001/err,再查看kafka的logs文件,可以看到已经生成了app-log-collector-0和error-log-collector-0文件,说明filebeat已经帮我们把数据收集好放到了kafka上。

logstash安装

我们在logstash的安装目录下新建一个文件夹

mkdir scrpit

然后cd进该文件,创建一个logstash-script.conf文件

cd scrpit
vim logstash-script.conf
## multiline 插件也可以用于其他类似的堆栈式信息,比如 linux 的内核日志。
input {
  kafka {
    ## app-log-服务名称
    topics_pattern => "app-log-.*"
    bootstrap_servers => "192.168.11.51:9092"
 codec => json
 consumer_threads => 1 ## 增加consumer的并行消费线程数
 decorate_events => true
    #auto_offset_rest => "latest"
 group_id => "app-log-group"
   }
   
   kafka {
    ## error-log-服务名称
    topics_pattern => "error-log-.*"
    bootstrap_servers => "192.168.11.51:9092"
 codec => json
 consumer_threads => 1
 decorate_events => true
    #auto_offset_rest => "latest"
 group_id => "error-log-group"
   }
   
}

filter {
  
  ## 时区转换
  ruby {
 code => "event.set('index_time',event.timestamp.time.localtime.strftime('%Y.%m.%d'))"
  }

  if "app-log" in [fields][logtopic]{
    grok {
        ## 表达式,这里对应的是Springboot输出的日志格式
        match => ["message", "\\[%{NOTSPACE:currentDateTime}\\] \\[%{NOTSPACE:level}\\] \\[%{NOTSPACE:thread-id}\\] \\[%{NOTSPACE:class}\\] \\[%{DATA:hostName}\\] \\[%{DATA:ip}\\] \\[%{DATA:applicationName}\\] \\[%{DATA:location}\\] \\[%{DATA:messageInfo}\\] ## (\\'\\'|%{QUOTEDSTRING:throwable})"]
    }
  }

  if "error-log" in [fields][logtopic]{
    grok {
        ## 表达式
        match => ["message", "\\[%{NOTSPACE:currentDateTime}\\] \\[%{NOTSPACE:level}\\] \\[%{NOTSPACE:thread-id}\\] \\[%{NOTSPACE:class}\\] \\[%{DATA:hostName}\\] \\[%{DATA:ip}\\] \\[%{DATA:applicationName}\\] \\[%{DATA:location}\\] \\[%{DATA:messageInfo}\\] ## (\\'\\'|%{QUOTEDSTRING:throwable})"]
    }
  }
  
}

## 测试输出到控制台:
output {
  stdout { codec => rubydebug }
}


## elasticsearch:
output {

  if "app-log" in [fields][logtopic]{
 ## es插件
 elasticsearch {
       # es服务地址
        hosts => ["192.168.11.35:9200"]
        # 用户名密码      
        user => "elastic"
        password => "123456"
        ## 索引名,+ 号开头的,就会自动认为后面是时间格式:
        ## javalog-app-service-2019.01.23 
        index => "app-log-%{[fields][logbiz]}-%{index_time}"
        # 是否嗅探集群ip:一般设置true;http://192.168.11.35:9200/_nodes/http?pretty
        # 通过嗅探机制进行es集群负载均衡发日志消息
        sniffing => true
        # logstash默认自带一个mapping模板,进行模板覆盖
        template_overwrite => true
    } 
  }
  
  if "error-log" in [fields][logtopic]{
 elasticsearch {
        hosts => ["192.168.11.35:9200"]    
        user => "elastic"
        password => "123456"
        index => "error-log-%{[fields][logbiz]}-%{index_time}"
        sniffing => true
        template_overwrite => true
    } 
  }
  

}

启动logstash

/usr/local/logstash-6.6.0/bin/logstash -f /usr/local/logstash-6.6.0/script/logstash-script.conf &

等待启动成功,我们再次访问192.168.11.31:8001/err

可以看到控制台开始打印日志

ElasticSearch与Kibana

ES和Kibana的搭建之前没写过博客,网上资料也比较多,大家可以自行搜索。

搭建完成后,访问Kibana的管理页面192.168.11.35:5601,选择Management -> Kinaba - Index Patterns

然后Create index pattern

  • index pattern 输入 app-log-*

  • Time Filter field name 选择 currentDateTime

这样我们就成功创建了索引。

我们再次访问192.168.11.31:8001/err,这个时候就可以看到我们已经命中了一条log信息

里面展示了日志的全量信息

到这里,我们完整的日志收集及可视化就搭建完成了!

【练手项目】基于SpringBoot的ERP系统,自带进销存+财务+生产功能

分享一套基于SpringBoot和Vue的企业级中后台开源项目,代码很规范!

能挣钱的,开源 SpringBoot 商城系统,功能超全,超漂亮!

PS:因为公众号平台更改了推送规则,如果不想错过内容,记得读完点一下“在看”,加个“星标”,这样每次新文章推送才会第一时间出现在你的订阅列表里。点“在看”支持我们吧!

以上是关于SpringBoot+Kafka+ELK 完成海量日志收集(超详细)的主要内容,如果未能解决你的问题,请参考以下文章

ELK+Filebeat+Kafka+ZooKeeper 构建海量日志分析平台

海量日志下的日志架构优化:filebeat+logstash+kafka+ELK

ELK+Filebeat+Kafka+ZooKeeper 构建海量日志分析平台(转)

3-ELK+Kafka+Filebeat 海量级日志收集 TB PB级别

基于Kafka+ELK搭建海量日志平台

ELK+Filebeat+Kafka+ZooKeeper 构建海量日志分析平台