2021-07-31:给定数组father,大小为N,表示一共有N个节点,father[i] = j 表示点i的父亲是点j, father表示的树一定是一棵树而不是森林,给定数组values,大小为N
Posted 福大大架构师每日一题
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了2021-07-31:给定数组father,大小为N,表示一共有N个节点,father[i] = j 表示点i的父亲是点j, father表示的树一定是一棵树而不是森林,给定数组values,大小为N相关的知识,希望对你有一定的参考价值。
2021-07-31:给定数组father,大小为N,表示一共有N个节点,father[i] = j 表示点i的父亲是点j, father表示的树一定是一棵树而不是森林,给定数组values,大小为N,values[i]=v表示节点i的权值是v。实现如下4个方法,保证4个方法都很快!1)让某个子树所有节点值加上v,入参:int head, int v;2)查询某个子树所有节点值的累加和,入参:int head;3)在树上从a到b的整条链上所有加上v,入参:int a, int b, int v;4)查询在树上从a到b的整条链上所有节点值的累加和,入参:int a, int b。
福大大 答案2021-07-31:
时间紧。见代码。
代码用golang编写。代码如下:
package main
import (
"fmt"
"math"
)
func main() {
father := []int{1, 2, 3, 4, 5}
values := []int{6, 7, 8, 9, 10}
tc := NewTreeChain(father, values)
right := NewRight(father, values)
tc.addSubtree(11, 22)
right.addSubtree(11, 22)
tc.addSubtree(33, 44)
right.addSubtree(33, 44)
if tc.queryChain(33, 44) != right.queryChain(33, 44) {
fmt.Println("错误")
} else {
fmt.Println("正确")
}
}
type TreeChain struct {
// 时间戳 0 1 2 3 4
tim int
// 节点个数是n,节点编号是1~n
n int
// 谁是头
h int
// 朴素树结构
tree [][]int
// 权重数组 原始的0节点权重是6 -> val[1] = 6
val []int
// father数组一个平移,因为标号要+1
fa []int
// 深度数组!
dep []int
// son[i] = 0 i这个节点,没有儿子
// son[i] != 0 j i这个节点,重儿子是j
son []int
// siz[i] i这个节点为头的子树,有多少个节点
siz []int
// top[i] = j i这个节点,所在的重链,头是j
top []int
// dfn[i] = j i这个节点,在dfs序中是第j个
dfn []int
// 如果原来的节点a,权重是10
// 如果a节点在dfs序中是第5个节点, tnw[5] = 10
tnw []int
// 线段树,在tnw上,玩连续的区间查询或者更新
seg *SegmentTree
}
func NewTreeChain(father []int, values []int) *TreeChain {
ret := &TreeChain{}
// 原始的树 tree,弄好了,可以从i这个点,找到下级的直接孩子
// 上面的一大堆结构,准备好了空间,values -> val
// 找到头部点
ret.initTree(father, values)
// fa;
// dep;
// son;
// siz;
ret.dfs1(ret.h, 0)
// top;
// dfn;
// tnw;
ret.dfs2(ret.h, ret.h)
ret.seg = NewSegmentTree(ret.tnw)
ret.seg.build(1, ret.n, 1)
return ret
}
func (this *TreeChain) initTree(father []int, values []int) {
this.tim = 0
this.n = len(father) + 1
this.tree = make([][]int, this.n)
this.val = make([]int, this.n)
this.fa = make([]int, this.n)
this.dep = make([]int, this.n)
this.son = make([]int, this.n)
this.siz = make([]int, this.n)
this.top = make([]int, this.n)
this.dfn = make([]int, this.n)
this.tnw = make([]int, this.n)
this.n--
cnum := make([]int, this.n)
for i := 0; i < this.n; i++ {
this.val[i+1] = values[i]
}
for i := 0; i < this.n; i++ {
if father[i] == i {
this.h = i + 1
} else {
cnum[father[i]]++
}
}
this.tree[0] = make([]int, 0)
for i := 0; i < this.n; i++ {
this.tree[i+1] = make([]int, cnum[i])
}
for i := 0; i < this.n; i++ {
if i+1 != this.h {
cnum[father[i]]--
this.tree[father[i]+1][cnum[father[i]]] = i + 1
}
}
}
// u 当前节点
// f u的父节点
func (this *TreeChain) dfs1(u int, f int) {
this.fa[u] = f
this.dep[u] = this.dep[f] + 1
this.siz[u] = 1
maxSize := -1
for _, v := range this.tree[u] { // 遍历u节点,所有的直接孩子
this.dfs1(v, u)
this.siz[u] += this.siz[v]
if this.siz[v] > maxSize {
maxSize = this.siz[v]
this.son[u] = v
}
}
}
// u当前节点
// t是u所在重链的头部
func (this *TreeChain) dfs2(u int, t int) {
this.tim++
this.dfn[u] = this.tim
this.top[u] = t
this.tnw[this.tim] = this.val[u]
if this.son[u] != 0 { // 如果u有儿子 siz[u] > 1
this.dfs2(this.son[u], t)
for _, v := range this.tree[u] {
if v != this.son[u] {
this.dfs2(v, v)
}
}
}
}
// head为头的子树上,所有节点值+value
// 因为节点经过平移,所以head(原始节点) -> head(平移节点)
func (this *TreeChain) addSubtree(head int, value int) {
// 原始点编号 -> 平移编号
head++
// 平移编号 -> dfs编号 dfn[head]
this.seg.add(this.dfn[head], this.dfn[head]+this.siz[head]-1, value, 1, this.n, 1)
}
func (this *TreeChain) querySubtree(head int) int {
head++
return this.seg.query(this.dfn[head], this.dfn[head]+this.siz[head]-1, 1, this.n, 1)
}
func (this *TreeChain) addChain(a int, b int, v int) {
a++
b++
for this.top[a] != this.top[b] {
if this.dep[this.top[a]] > this.dep[this.top[b]] {
this.seg.add(this.dfn[this.top[a]], this.dfn[a], v, 1, this.n, 1)
a = this.fa[this.top[a]]
} else {
this.seg.add(this.dfn[this.top[b]], this.dfn[b], v, 1, this.n, 1)
b = this.fa[this.top[b]]
}
}
if this.dep[a] > this.dep[b] {
this.seg.add(this.dfn[b], this.dfn[a], v, 1, this.n, 1)
} else {
this.seg.add(this.dfn[a], this.dfn[b], v, 1, this.n, 1)
}
}
func (this *TreeChain) queryChain(a int, b int) int {
a++
b++
ans := 0
for this.top[a] != this.top[b] {
if this.dep[this.top[a]] > this.dep[this.top[b]] {
ans += this.seg.query(this.dfn[this.top[a]], this.dfn[a], 1, this.n, 1)
a = this.fa[this.top[a]]
} else {
ans += this.seg.query(this.dfn[this.top[b]], this.dfn[b], 1, this.n, 1)
b = this.fa[this.top[b]]
}
}
if this.dep[a] > this.dep[b] {
ans += this.seg.query(this.dfn[b], this.dfn[a], 1, this.n, 1)
} else {
ans += this.seg.query(this.dfn[a], this.dfn[b], 1, this.n, 1)
}
return ans
}
type SegmentTree struct {
MAXN int
arr []int
sum []int
lazy []int
}
func NewSegmentTree(origin []int) *SegmentTree {
ret := &SegmentTree{}
ret.MAXN = len(origin)
ret.arr = origin
ret.sum = make([]int, ret.MAXN<<2)
ret.lazy = make([]int, ret.MAXN<<2)
return ret
}
func (this *SegmentTree) pushUp(rt int) {
this.sum[rt] = this.sum[rt<<1] + this.sum[rt<<1|1]
}
func (this *SegmentTree) pushDown(rt int, ln int, rn int) {
if this.lazy[rt] != 0 {
this.lazy[rt<<1] += this.lazy[rt]
this.sum[rt<<1] += this.lazy[rt] * ln
this.lazy[rt<<1|1] += this.lazy[rt]
this.sum[rt<<1|1] += this.lazy[rt] * rn
this.lazy[rt] = 0
}
}
func (this *SegmentTree) build(l int, r int, rt int) {
if l == r {
this.sum[rt] = this.arr[l]
return
}
mid := (l + r) >> 1
this.build(l, mid, rt<<1)
this.build(mid+1, r, rt<<1|1)
this.pushUp(rt)
}
func (this *SegmentTree) add(L int, R int, C int, l int, r int, rt int) {
if L <= l && r <= R {
this.sum[rt] += C * (r - l + 1)
this.lazy[rt] += C
return
}
mid := (l + r) >> 1
this.pushDown(rt, mid-l+1, r-mid)
if L <= mid {
this.add(L, R, C, l, mid, rt<<1)
}
if R > mid {
this.add(L, R, C, mid+1, r, rt<<1|1)
}
this.pushUp(rt)
}
func (this *SegmentTree) query(L int, R int, l int, r int, rt int) int {
if L <= l && r <= R {
return this.sum[rt]
}
mid := (l + r) >> 1
this.pushDown(rt, mid-l+1, r-mid)
ans := 0
if L <= mid {
ans += this.query(L, R, l, mid, rt<<1)
}
if R > mid {
ans += this.query(L, R, mid+1, r, rt<<1|1)
}
return ans
}
// 为了测试,这个结构是暴力但正确的方法
type Right struct {
n int
tree [][]int
fa []int
val []int
path map[int]int
}
func NewRight(father []int, value []int) *Right {
ret := &Right{}
ret.n = len(father)
ret.tree = make([][]int, ret.n)
ret.fa = make([]int, ret.n)
ret.val = make([]int以上是关于2021-07-31:给定数组father,大小为N,表示一共有N个节点,father[i] = j 表示点i的父亲是点j, father表示的树一定是一棵树而不是森林,给定数组values,大小为N的主要内容,如果未能解决你的问题,请参考以下文章
markdown 打印给定大小为n的数组中r元素的所有可能组合
给定一个大小为 N 的数组,我需要找到在最小和最大范围内求和的最小值数