「深度学习一遍过」必修7:模型训练验证与可视化
Posted 荣仔!最靓的仔!
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了「深度学习一遍过」必修7:模型训练验证与可视化相关的知识,希望对你有一定的参考价值。
本专栏用于记录关于深度学习的笔记,不光方便自己复习与查阅,同时也希望能给您解决一些关于深度学习的相关问题,并提供一些微不足道的人工神经网络模型设计思路。
专栏地址:「深度学习一遍过」必修篇
目录
1 Create Dataset
1.1 生成训练集和测试集
import os
import random # 打乱数据用的
def CreateTrainingSet():
# 百分之80用来当训练集
train_ratio = 0.8
# 用来当测试集
test_ratio = 1-train_ratio
rootdata = r"data" # 数据的根目录
train_list, test_list = [], [] # 读取里面每一类的类别
data_list = []
# 生产train.txt和test.txt
class_flag = -1
for a,b,c in os.walk(rootdata):
print(a)
for i in range(len(c)):
data_list.append(os.path.join(a,c[i]))
for i in range(0,int(len(c)*train_ratio)):
train_data = os.path.join(a, c[i])+'\\t'+str(class_flag)+'\\n'
train_list.append(train_data)
for i in range(int(len(c) * train_ratio),len(c)):
test_data = os.path.join(a, c[i]) + '\\t' + str(class_flag)+'\\n'
test_list.append(test_data)
class_flag += 1
print(train_list)
random.shuffle(train_list) # 打乱次序
random.shuffle(test_list)
with open('train.txt','w',encoding='UTF-8') as f:
for train_img in train_list:
f.write(str(train_img))
with open('test.txt','w',encoding='UTF-8') as f:
for test_img in test_list:
f.write(test_img)
if __name__ == "__main__":
CreateTrainingSet()
1.2 生成验证集
import os
import random#打乱数据用的
def CreateEvalData():
data_list = []
test_root = r".\\testdata"
for a, b, c in os.walk(test_root):
for i in range(len(c)):
data_list.append(os.path.join(a, c[i]))
print(data_list)
with open('eval.txt', 'w', encoding='UTF-8') as f:
for test_img in data_list:
f.write(test_img + '\\t' + "0" + '\\n')
if __name__ == "__main__":
CreateEvalData()
2 模型训练
2.1 都进行微调
'''
纪录训练信息,包括:
1. train loss
2. test loss
3. test accuracy
'''
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision.models import resnet18
from utils import LoadData, write_result
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
avg_total = 0.0
# 从数据加载器中读取batch(一次读取多少张,即批次数),X(图片数据),y(图片真实标签)。
for batch, (X, y) in enumerate(dataloader):
# 将数据存到显卡
X, y = X.cuda(), y.cuda()
# 得到预测的结果pred
pred = model(X)
# 计算预测的误差
loss = loss_fn(pred, y)
avg_total = avg_total+loss.item()
# 反向传播,更新模型参数
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 每训练10次,输出一次当前信息
if batch % 10 == 0:
loss, current = loss.item(), batch * len(X)
print(f"loss: {loss:>5f} [{current:>5d}/{size:>5d}]")
avg_loss = f"{(avg_total % batch_size):>5f}"
return avg_loss
def test(dataloader, model):
size = len(dataloader.dataset)
# 将模型转为验证模式
model.eval()
# 初始化test_loss 和 correct, 用来统计每次的误差
test_loss, correct = 0, 0
# 测试时模型参数不用更新,所以no_gard()
# 非训练, 推理期用到
with torch.no_grad():
# 加载数据加载器,得到里面的X(图片数据)和y(真实标签)
for X, y in dataloader:
# 将数据转到GPU
X, y = X.cuda(), y.cuda()
# 将图片传入到模型当中就,得到预测的值pred
pred = model(X)
# 计算预测值pred和真实值y的差距
test_loss += loss_fn(pred, y).item()
# 统计预测正确的个数
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss /= size
correct /= size
accuracy = f"{(100*correct):>0.1f}"
avg_loss = f"{test_loss:>8f}"
print(f"correct = {correct}, Test Error: \\n Accuracy: {accuracy}%, Avg loss: {avg_loss} \\n")
# 增加数据写入功能
return accuracy, avg_loss
if __name__ == '__main__':
batch_size = 32
# # 给训练集和测试集分别创建一个数据集加载器
train_data = LoadData("train.txt", True)
valid_data = LoadData("test.txt", False)
train_dataloader = DataLoader(dataset=train_data, num_workers=4, pin_memory=True, batch_size=batch_size, shuffle=True)
test_dataloader = DataLoader(dataset=valid_data, num_workers=4, pin_memory=True, batch_size=batch_size)
# 如果显卡可用,则用显卡进行训练
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using {device} device")
'''
修改ResNet18模型的最后一层
'''
pretrain_model = resnet18(pretrained=False)
num_ftrs = pretrain_model.fc.in_features # 获取全连接层的输入
pretrain_model.fc = nn.Linear(num_ftrs, 5) # 全连接层改为不同的输出
pretrained_dict = torch.load('./resnet18_pretrain.pth')
# # 弹出fc层的参数
pretrained_dict.pop('fc.weight')
pretrained_dict.pop('fc.bias')
# # 自己的模型参数变量,在开始时里面参数处于初始状态,所以很多0和1
model_dict = pretrain_model.state_dict()
# # 去除一些不需要的参数
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
# # 模型参数列表进行参数更新,加载参数
model_dict.update(pretrained_dict)
# 改进过的预训练模型结构,加载刚刚的模型参数列表
pretrain_model.load_state_dict(model_dict)
'''
冻结部分层
'''
# 将满足条件的参数的 requires_grad 属性设置为False
for name, value in pretrain_model.named_parameters():
if (name != 'fc.weight') and (name != 'fc.bias'):
value.requires_grad = False
#
# filter 函数将模型中属性 requires_grad = True 的参数选出来
params_conv = filter(lambda p: p.requires_grad, pretrain_model.parameters()) # 要更新的参数在parms_conv当中
model = pretrain_model.to(device)
# 定义损失函数,计算相差多少,交叉熵,
loss_fn = nn.CrossEntropyLoss()
''' 控制优化器只更新需要更新的层 '''
optimizer = torch.optim.SGD(params_conv, lr=1e-3) # 初始学习率
#
# 一共训练5次
epochs = 5
best = 0.0
for t in range(epochs):
print(f"Epoch {t + 1}\\n-------------------------------")
train_loss = train(train_dataloader, model, loss_fn, optimizer)
accuracy, avg_loss = test(test_dataloader, model)
write_result("mobilenet_36_traindata.txt", t+1, train_loss, avg_loss, accuracy)
if (t+1) % 10 == 0:
torch.save(model.state_dict(), "resnet_epoch_"+str(t+1)+"_acc_"+str(accuracy)+".pth")
if float(accuracy) > best:
best = float(accuracy)
torch.save(model.state_dict(), "BEST_resnet_epoch_" + str(t+1) + "_acc_" + str(accuracy) + ".pth")
print("Train PyTorch Model Success!")
2.2 只微调最后
'''
纪录训练信息,包括:
1. train loss
2. test loss
3. test accuracy
'''
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision.models import resnet18
from utils import LoadData, write_result
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
avg_total = 0.0
# 从数据加载器中读取batch(一次读取多少张,即批次数),X(图片数据),y(图片真实标签)。
for batch, (X, y) in enumerate(dataloader):
# 将数据存到显卡
# X, y = X.cuda(), y.cuda()
# 得到预测的结果pred
pred = model(X)
# 计算预测的误差
loss = loss_fn(pred, y)
avg_total = avg_total+loss.item()
# 反向传播,更新模型参数
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 每训练10次,输出一次当前信息
if batch % 10 == 0:
loss, current = loss.item(), batch * len(X)
print(f"loss: {loss:>5f} [{current:>5d}/{size:>5d}]")
avg_loss = f"{(avg_total % batch_size):>5f}"
return avg_loss
def test(dataloader, model):
size = len(dataloader.dataset)
# 将模型转为验证模式
model.eval()
# 初始化test_loss 和 correct, 用来统计每次的误差
test_loss, correct = 0, 0
# 测试时模型参数不用更新,所以no_gard()
# 非训练, 推理期用到
with torch.no_grad():
# 加载数据加载器,得到里面的X(图片数据)和y(真实标签)
for X, y in dataloader:
# 将数据转到GPU
# X, y = X.cuda(), y.cuda()
# 将图片传入到模型当中就,得到预测的值pred
pred = model(X)
# 计算预测值pred和真实值y的差距
test_loss += loss_fn(pred, y).item()
# 统计预测正确的个数
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss /= size
correct /= size
accuracy = f"{(100*correct):>0.1f}"
avg_loss = f"{test_loss:>8f}"
print(f"correct = {correct}, Test Error: \\n Accuracy: {accuracy}%, Avg loss: {avg_loss} \\n")
# 增加数据写入功能
return accuracy, avg_loss
if __name__ == '__main__':
batch_size = 32
# # 给训练集和测试集分别创建一个数据集加载器
train_data = LoadData("train.txt", True)
valid_data = LoadData("test.txt", False)
train_dataloader = DataLoader(dataset=train_data, num_workers=4, pin_memory=True, batch_size=batch_size, shuffle=True)
test_dataloader = DataLoader(dataset=valid_data, num_workers=4, pin_memory=True, batch_size=batch_size)
# 如果显卡可用,则用显卡进行训练
device = "cpu"
print(f"Using {device} device")
'''
修改ResNet18模型的最后一层
'''
finetune_net = resnet18(pretrained=True)
finetune_net.fc = nn.Linear(finetune_net.fc.in_features, 5)
nn.init.xavier_normal_(finetune_net.fc.weight)
'''
冻结部分层
'''
parms_1x = [value for name, value in finetune_net.named_parameters() if name not in ["fc.weight", "fc.bias"]]
# 最后一层10倍学习率
parms_10x = [value for name, value in finetune_net.named_parameters() if name in ["fc.weight", "fc.bias"]]
model = finetune_net.to(device)
# 定义损失函数,计算相差多少,交叉熵,
loss_fn = nn.CrossEntropyLoss()
''' 控制优化器只更新需要更新的层 '''
learning_rate = 1e-4
optimizer = torch.optim.SGD([
{
'params': parms_1x
},
{
'params':parms_10x,
'lr':learning_rate * 10
}],lr=learning_rate)
#
# 一共训练5次
epochs = 5
best = 0.0
for t in range(epochs):
print(f"Epoch {t + 1}\\n-------------------------------")
train_loss = train(train_dataloader, model, loss_fn, optimizer)
accuracy, avg_loss = test(test_dataloader, model)
write_result("model_traindata.txt", t+1, train_loss, avg_loss, accuracy)
if (t+1) % 10 == 0:
torch.save(model.state_dict(), "resnet_epoch_"+str(t+1)+"_acc_"+str(accuracy)+".pth")
if float(accuracy) > best:
best = float(accuracy)
torch.save(model.state_dict(), "BEST_resnet_epoch_" + str(t+1) + "_acc_" + str(accuracy) + ".pth")
print("Train PyTorch Model Success!")
2.3 从头开始训练不微调
'''
纪录训练信息,包括:
1. train loss
2. test loss
3. test accuracy
'''
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision.models import resnet18
from utils import LoadData, write_result
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
avg_total = 0.0
# 从数据加载器中读取batch(一次读取多少张,即批次数),X(图片数据),y(图片真实标签)。
for batch, (X, y) in enumerate(dataloader):
# 将数据存到显卡
# X, y = X.cuda(), y.cuda()
# 得到预测的结果pred
pred = model(X)
# 计算预测的误差
loss = loss_fn(pred, y)
avg_total = avg_total+loss.item()
# 反向传播,更新模型参数
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 每训练10次,输出一次当前信息
if batch % 10 == 0:
loss, current = loss.item(), batch * len(X)
print(f"loss: {loss:>5f} [{current:>5d}/{size:>5d}]")
avg_loss = f"{(avg_total % batch_size):>5f}"
return avg_loss
def test(dataloader, model):
size = len(dataloader.dataset)
# 将模型转为验证模式
model.eval()
# 初始化test_loss 和 correct, 用来统计每次的误差
test_loss, correct = 0, 0
# 测试时模型参数不用更新,所以no_gard()
# 非训练, 推理期用到
with torch.no_grad():
# 加载数据加载器,得到里面的X(图片数据)和y(真实标签)
for X, y in dataloader:
# 将数据转到GPU
# X, y = X.cuda(), y.cuda()
# 将图片传入到模型当中就,得到预测的值pred
pred = model(X)
# 计算预测值pred和真实值y的差距
test_loss += loss_fn(pred, y).item()
# 统计预测正确的个数
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss /= size
correct /= size
accuracy = f"{(100*correct):>0.1f}"
avg_loss = f"{test_loss:>8f}"
print(f"correct = {correct}, Test Error: \\n Accuracy: {accuracy}%, Avg loss: {avg_loss} \\n")
# 增加数据写入功能
return accuracy, avg_loss
if __name__ == '__main__':
batch_size = 32
# # 给训练集和测试集分别创建一个数据集加载器
train_data = LoadData("train.txt", True)
valid_data = LoadData("test.txt", False)
train_dataloader = DataLoader(dataset=train_data, num_workers=4, pin_memory=True, batch_size=batch_size, shuffle=True)
test_dataloader = DataLoader(dataset=valid_data, num_workers=4, pin_memory=True, batch_size=batch_size)
# 如果显卡可用,则用显卡进行训练
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using {device} device")
'''
修改ResNet18模型的最后一层
'''
model = resnet18(pretrained=False, num_classes=5)
# 定义损失函数,计算相差多少,交叉熵,
loss_fn = nn.CrossEntropyLoss()
''' 控制优化器只更新需要更新的层 '''
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3) # 初始学习率
#
# 一共训练5次
epochs = 5
best = 0.0
for t in range(epochs):
print(f"Epoch {t + 1}\\n-------------------------------")
train_loss = train(train_dataloader, model, loss_fn, optimizer)
accuracy, avg_loss = test(test_dataloader, model)
write_result("model_traindata.txt", t+1, train_loss, avg_loss, accuracy)
if (t+1) % 10 == 0:
torch.save(model.state_dict(), "resnet_epoch_"+str(t+1)+"_acc_"+str(accuracy)+".pth")
if float(accuracy) > best:
best = float(accuracy)
torch.save(model.state_dict(), "BEST_resnet_epoch_" + str(t+1) + "_acc_" + str(accuracy) + ".pth")
print("Train PyTorch Model Success!")
3 模型验证与可视化
3.1 模型验证
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision.models import resnet18
from utils import LoadData, write_result
import pandas as pd
def eval(dataloader, model):
label_list = []
likelihood_list = []
model.eval()
with torch.no_grad():
# 加载数据加载器,得到里面的X(图片数据)和y(真实标签)
for X, y in dataloader:
# 将数据转到GPU
X = X.cuda()
# 将图片传入到模型当中就,得到预测的值pred
pred = model(X)
# 获取可能性最大的标签
label = torch.softmax(pred,1).cpu().numpy().argmax()
label_list.append(label)
# 获取可能性最大的值(即概率)
likelihood = torch.softmax(pred,1).cpu().numpy().max()
likelihood_list.append(likelihood)
return label_list,likelihood_list
if __name__ == "__main__":
'''
1. 导入模型结构
'''
model = resnet18(pretrained=False)
num_ftrs = model.fc.in_features # 获取全连接层的输入
model.fc = nn.Linear(num_ftrs, 5) # 全连接层改为不同的输出
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using {device} device")
'''
2. 加载模型参数
'''
model_loc = "./BEST_resnet_epoch_10_acc_80.9.pth"
model_dict = torch.load(model_loc)
model.load_state_dict(model_dict)
model = model.to(device)
'''
3. 加载图片
'''
valid_data = LoadData("eval.txt", train_flag=False)
test_dataloader = DataLoader(dataset=valid_data, num_workers=2, pin_memory=True, batch_size=1)
'''
4. 获取结果
'''
label_list, likelihood_list = eval(test_dataloader, model)
label_names = ["daisy", "dandelion","rose","sunflower","tulip"]
result_names = [label_names[i] for i in label_list]
list = [result_names, likelihood_list]
df = pd.DataFrame(data=list)
df2 = pd.DataFrame(df.values.T, columns=["label", "likelihood"])
print(df2)
df2.to_csv('testdata.csv', encoding='gbk')
3.2 混淆矩阵、召回率、精准率、ROC曲线可视化
'''
模型性能度量
'''
from sklearn.metrics import * # pip install scikit-learn
import matplotlib.pyplot as plt # pip install matplotlib
import numpy as np # pip install numpy
from numpy import interp
from sklearn.preprocessing import label_binarize
import pandas as pd # pip install pandas
'''
读取数据
需要读取模型输出的标签(predict_label)以及原本的标签(true_label)
'''
target_loc = "test.txt"
target_data = pd.read_csv(target_loc, sep="\\t", names=["loc","type"])
true_label = [i for i in target_data["type"]]
predict_loc = "testdata.csv"
predict_data = pd.read_csv(predict_loc)#,index_col=0)
predict_label = predict_data.to_numpy().argmax(axis=1)
predict_score = predict_data.to_numpy().max(axis=1)
print("predict_score = ",predict_score )
'''
常用指标:精度,查准率,召回率,F1-Score
'''
# 精度,准确率, 预测正确的占所有样本种的比例
accuracy = accuracy_score(true_label, predict_label)
print("精度: ",accuracy)
# 查准率P(准确率),precision(查准率)=TP/(TP+FP)
precision = precision_score(true_label, predict_label, labels=None, pos_label=1, average='macro') # 'micro', 'macro', 'weighted'
print("查准率P: ",precision)
# 查全率R(召回率),原本为对的,预测正确的比例;recall(查全率)=TP/(TP+FN)
recall = recall_score(true_label, predict_label, average='micro') # 'micro', 'macro', 'weighted'
print("召回率: ",recall)
# F1-Score
f1 = f1_score(true_label, predict_label, average='micro') # 'micro', 'macro', 'weighted'
print("F1 Score: ",f1)
'''
混淆矩阵
'''
label_names = ["daisy", "dandelion","rose","sunflower","tulip"]
confusion = confusion_matrix(true_label, predict_label, labels=[i for i in range(len(label_names))])
# print("混淆矩阵: \\n",confusion)
plt.matshow(confusion, cmap=plt.cm.Oranges) # Greens, Blues, Oranges, Reds
plt.colorbar()
for i in range(len(confusion)):
for j in range(len(confusion)):
plt.annotate(confusion[i,j], xy=(i, j), horizontalalignment='center', verticalalignment='center')
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.xticks(range(len(label_names)), label_names)
plt.yticks(range(len(label_names)), label_names)
plt.title("Confusion Matrix")
plt.show()
'''
ROC曲线(多分类)
'''
n_classes = len(label_names)
binarize_predict = label_binarize(predict_label, classes=[i for i in range(n_classes)])
# 读取预测结果
predict_score = predict_data.to_numpy()
# 计算每一类的ROC
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):
fpr[i], tpr[i], _ = roc_curve(binarize_predict[:,i], [socre_i[i] for socre_i in predict_score])
roc_auc[i] = auc(fpr[i], tpr[i])
all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)]))
# Then interpolate all ROC curves at this points
mean_tpr = np.zeros_like(all_fpr)
for i in range(n_classes):
mean_tpr += interp(all_fpr, fpr[i], tpr[i])
# Finally average it and compute AUC
mean_tpr /= n_classes
fpr["macro"] = all_fpr
tpr["macro"] = mean_tpr
roc_auc["macro"] = auc(fpr["macro"], tpr["macro"])
# Plot all ROC curves
lw = 2
plt.figure()
plt.plot(fpr["macro"], tpr["macro"],
label='macro-average ROC curve (area = {0:0.2f})'
''.format(roc_auc["macro"]),
color='navy', linestyle=':', linewidth=4)
for i in range(n_classes):
plt.plot(fpr[i], tpr[i], lw=lw, label='ROC curve of {0} (area = {1:0.2f})'.format(label_names[i], roc_auc[i]))
plt.plot([0, 1], [0, 1], 'k--', lw=lw)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Multi-class receiver operating characteristic ')
plt.legend(loc="lower right")
plt.show()
欢迎大家交流评论,一起学习
希望本文能帮助您解决您在这方面遇到的问题
感谢阅读
END
以上是关于「深度学习一遍过」必修7:模型训练验证与可视化的主要内容,如果未能解决你的问题,请参考以下文章
「深度学习一遍过」必修28:基于C3D预训练模型训练自己的视频分类数据集的设计与实现
「深度学习一遍过」必修28:基于C3D预训练模型训练自己的视频分类数据集的设计与实现