多种迭代写法实现二叉树遍历

Posted 保护眼睛

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了多种迭代写法实现二叉树遍历相关的知识,希望对你有一定的参考价值。

二叉树迭代遍历

思想

利用栈和队列都可以实现树的迭代遍历。递归的写法将这个遍历的过程交给系统的堆栈去实现了,所以思想都是一样的、无非就是插入值的时机不一样。利用栈的先进先出的特点,对于前序遍历、我们可以先将当前的值放进结果集中,表示的是根节点的值、然后将当前的节点加入到栈中、当前的节点等于自己的left、再次循环的时候、也会将left作为新的节点、直到节点为空、也就是走到了树的最左边、然后回退、也就是弹栈、、也可以认为回退的过程是从低向上的、具体就是让当前的节点等于栈弹出的right、继续重复上面的过程,也就实现了树的前序遍历、也就是bfs.后续遍历、中序遍历思想也是类似的。

实现


    public List<Integer> preorderTraversal1(TreeNode root) {
        List<Integer> res = new ArrayList<>();
        Stack<TreeNode> stack = new Stack<>();

        while (!stack.isEmpty() || root != null) {
            while (root != null) {
                res.add(root.val);
                stack.add(root);
                root = root.left;

            }

            TreeNode cur = stack.pop();
            root = cur.right;
        }
        return res;
    }




    public List<Integer> preorderTraversal2(TreeNode root) {
        List<Integer> res = new ArrayList<>();
        Stack<TreeNode> stack = new Stack<>();

        while (!stack.isEmpty() || root != null) {
            if (root != null) {
                res.add(root.val);
                stack.add(root);
                root = root.left;

            } else {
                TreeNode cur = stack.pop();
                root = cur.right;
            }

        }
        return res;
    }


    public List<Integer> preorderTraversal3(TreeNode root) {
        List<Integer> res = new ArrayList<>();
        if (root == null) return res;
        Stack<TreeNode> stack = new Stack<>();
        stack.push(root);
        while (!stack.isEmpty()) {
            TreeNode cur = stack.pop();
            res.add(cur.val);
            if (cur.right != null) {
                stack.push(cur.right);
            }
            if (cur.left != null) {
                stack.push(cur.left);
            }
        }
        return res;
    }


    public List<Integer> preorderTraversal4(TreeNode root) {

        List<Integer> res = new ArrayList<>();
        if (root == null) {
            return res;
        }
        LinkedList<TreeNode> queue = new LinkedList<>();
        queue.add(root);
        while (!queue.isEmpty()) {
            root = queue.poll();
            res.add(root.val);
            if (root.right != null) {
                queue.addFirst(root.right);
            }
            if (root.left != null) {
                root = root.left;
                while (root != null) {
                    res.add(root.val);
                    if (root.right != null) {
                        queue.addFirst(root.right);
                    }
                    root = root.left;
                }
            }
        }
        return res;
    }




    public List<Integer> inorderTraversal1(TreeNode root) {
        List<Integer> res = new ArrayList<>();
        Stack<TreeNode> stack = new Stack<>();

        while (root != null || !stack.isEmpty()) {
            if (root != null) {
                stack.add(root);
                root = root.left;
            } else {
                TreeNode cur = stack.pop();
                res.add(cur.val);
                root = cur.right;
            }
        }

        return res;
    }

    public List<Integer> inorderTraversal2(TreeNode root) {
        List<Integer> res = new ArrayList<>();
        Stack<TreeNode> stack = new Stack<>();

        while (root != null || !stack.isEmpty()) {
            while (root != null) {
                stack.add(root);
                root = root.left;
            }

            TreeNode cur = stack.pop();
            res.add(cur.val);
            root = cur.right;

        }

        return res;
    }


    public List<Integer> postorderTraversal1(TreeNode root) {
        List<Integer> res = new ArrayList<>();
        if (root == null) return res;
        Stack<TreeNode> stack = new Stack<>();
        stack.push(root);
        while (!stack.isEmpty()) {
            TreeNode cur = stack.pop();
            res.add(cur.val);
            if (cur.left != null) {
                stack.push(cur.left);
            }
            if (cur.right != null) {
                stack.push(cur.right);
            }
        }
        Collections.reverse(res);
        return res;
    }

    public List<Integer> postorderTraversal2(TreeNode root) {
        List<Integer> res = new ArrayList<>();
        Stack<TreeNode> stack = new Stack<>();
        while (!stack.isEmpty()) {
            while (root != null) {
                res.add(root.val);
                stack.push(root);
                root = root.right;
            }

            TreeNode cur = stack.pop();
            root = cur.left;
        }
        Collections.reverse(res);
        return res;
    }

    public List<List<Integer>> levelOrder(TreeNode root) {
        List<List<Integer>> ret = new ArrayList<>();
        if(root == null)return ret;
        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root);
        while (!queue.isEmpty()){
            int size = queue.size();
            List<Integer> list = new ArrayList<>();
            while(size!=0){
                TreeNode cur = queue.poll();
                list.add(cur.val);
                if(cur.left!=null){
                    queue.offer(cur.left);
                }
                if(cur.right!= null){
                    queue.offer(cur.right);
                }
                size --;
            }
            ret.add(list);
        }
        return ret;
    }

以上是关于多种迭代写法实现二叉树遍历的主要内容,如果未能解决你的问题,请参考以下文章

二叉树遍历的统一化写法

迭代遍历二叉树

必须掌握,二叉树的前中后序遍历(迭代+递归)详细代码与思路

二叉树的遍历:迭代实现

二叉树的遍历:迭代实现

二叉树的遍历:迭代实现