数学建模暑期集训6:用SPSS对数据进行多元线性回归分析

Posted Z|Star

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了数学建模暑期集训6:用SPSS对数据进行多元线性回归分析相关的知识,希望对你有一定的参考价值。

在本专栏的第六篇数学建模学习笔记(六)多元回归分析算法(matlab)博文中,记录了如何用matlab进行多元回归分析。本篇则将使用spss软件达到同样的效果,且使用起来比matlab更为方便。

空谈理论,枯燥难懂。 话不多说,直接上例子。

1.数据源

为了简化分析,这里采用了三个变量:树干直径、树干高度、树干体积,树干体积和树干直径、高度有关。
在这里插入图片描述

2.散点图大致判断

在多元线性回归分析之前,有必要先对数据是否具有线性做个直观判断。(否则,一眼看出来不是线性就没必要线性回归了)。散点图是比较方便的办法。
在这里插入图片描述
图中可以看到,体积和直径线性关系很明显,和高度也有一定关系,因此继续进行线性回归分析。

3.回归参数设置

分析->回归->线性 进入设置
在这里插入图片描述
勾选需要的参数:
在这里插入图片描述
在这里插入图片描述

4.查看统计量

模型汇总表:
在这里插入图片描述
R方代表线性拟合程度,越接近1越好;
德宾-沃森指数表示因变量之间的独立性,越接近2越好;
在这里插入图片描述
在这里插入图片描述
F越大,说明回归方程越显著;
Sig即显著性,sig<0.05,则认为显著;

在这里插入图片描述
VIF(方差膨胀因子)在这里插入图片描述
两个因变量共线性存在,即一个量几乎可由另一个量来近似表示,相当于两个变量只起到了一个变量的效果。

5.逐步法

如果因变量y和自变量x线性效果不好,可以用逐步法来判断那几个x与y的线性特性显著。

在spss的参数设置页面,可以选择“前进”或“后退”,前进即从少到多,后退即从多到少。
在这里插入图片描述
在这里插入图片描述
选择向前,可以看到因变量和单独一个变量以及两个变量的不同结果。有助于变量的剔除。

以上是关于数学建模暑期集训6:用SPSS对数据进行多元线性回归分析的主要内容,如果未能解决你的问题,请参考以下文章

数学建模暑期集训25:时间序列+Spss实操

数学建模暑期集训21:主成分分析(PCA)

spss 多元非线性回归分析

数学建模暑期集训9:灰色关联分析

多元非线性回归分析 用spss如何操作

数学建模暑期集训4:线性规划&整数规划&01规划(Lingo求解)