用python爬取基金网信息数据,保存到表格,并做成四种简单可视化。(爬虫之路,永无止境!)
Posted 主打Python
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了用python爬取基金网信息数据,保存到表格,并做成四种简单可视化。(爬虫之路,永无止境!)相关的知识,希望对你有一定的参考价值。
用python爬取基金网信息数据,保存到表格,并做成四种简单可视化。(爬虫之路,永无止境!)
上次 2021-07-07写的用python爬取腾讯招聘网岗位信息保存到表格,并做成简单可视化。
有的人留言问我:
可以作为模板么?
我的回答:
可以,可以拿做模板使用
今天我带大家再来使用一下这个模板
开发环境:
windows10
python3.6
开发工具:
pycharm
库:
matplotlib、numpy、lxml
代码展示:
爬虫代码还是很简单的
1.start_url = ‘http://fund.eastmoney.com/fund.html’
2.使用ua大列表,进行ua的替换
3.获取页面源码,然后解析
4.进行xpath语法提取相应的数据
def __init__(self):
# 起始的请求地址----初始化
self.start_url = 'http://fund.eastmoney.com/fund.html'
def parse_start_url(self):
"""
发送请求,获取响应
:return:
"""
# 请求头
headers = {
# 通过随机模块提供的随机拿取数据方法
'User-Agent': random.choice(USER_AGENT_LIST)
}
# 发送请求,获取响应字节数据
response = session.get(self.start_url, headers=headers).content
"""序列化对象,将字节内容数据,经过转换,变成可进行xpath操作的对象"""
response = etree.HTML(response)
"""调用提取第二份响应数据"""
self.parse_response_data(response)
def parse_response_data(self, response):
"""
解析response响应数据,提取
:return:
"""
# 股票名称
name_list_1 = response.xpath('//tbody/tr/td[5]/nobr/a[1]/text()')
# 昨日单位净值
num_1_list_data_1 = response.xpath('//tbody/tr/td[6]/text()')
# 昨日累计净值
num_2_list_data_1 = response.xpath('//tbody/tr/td[7]/text()')
将数据保存到表格,先将数据遍历
# 遍历解析3个列表数据
for a, b, c in zip(name_list, num_1_list, num_2_list):
# 构造保存的excel字典数据
dict_data = {
# 会根据该字典的key值创建工作簿的sheet名
'股票数据': [a, b, c]
}
"""调用解析保存excel表格方法"""
self.parse_save_excel(dict_data)
生成四种简单可视化
先将数据打包一下
def parse_img_four_func(self, index_list, name_list, num_1_list, num_2_list):
"""
解析生成四张分析图
:param index_list: 随机数据的下标
:param name_list: 股票名称列表
:param num_1_list: 昨日单位净值列表
:param num_2_list: 昨日累计净值列表
:return:
"""
title_list = [] # 名称
qy_num_1 = [] # 单位净值
qy_num_2 = [] # 累计净值
for index_num in index_list:
# 企业名称列表
title_list.append(name_list[index_num])
# 昨日单位净值列表
qy_num_1.append(num_1_list[index_num])
# 昨日累计净值列表
qy_num_2.append(num_2_list[index_num])
生成折线图
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
# plot中参数的含义分别是横轴值,纵轴值,线的形状,颜色,透明度,线的宽度和标签
plt.plot(title_list, qy_num_2, 'ro-', color='#4169E1', alpha=0.8, linewidth=1, label='累计净值')
plt.plot(title_list, qy_num_1, 'ro-', color='#69e141', alpha=0.8, linewidth=1, label='单位净值')
# 显示标签,如果不加这句,即使在plot中加了label='一些数字'的参数,最终还是不会显示标签
plt.legend(loc="upper right")
plt.xticks(rotation=270)
plt.xlabel('地点数量')
plt.ylabel('工作属性数量')
plt.savefig('根据净值生成折线图.png')
plt.show()
生成饼图
addr_dict_key = title_list
addr_dict_value = qy_num_1
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
plt.rcParams['axes.unicode_minus'] = False
plt.pie(addr_dict_value, labels=addr_dict_key, autopct='%1.1f%%')
plt.title(f'单位净值对比')
plt.savefig(f'单位净值对比-饼图')
plt.show()
生成散点图
# 这两行代码解决 plt 中文显示的问题
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
# 输入岗位地址和岗位属性数据
production = title_list
tem = qy_num_2
colors = np.random.rand(len(tem)) # 颜色数组
plt.scatter(tem, production, s=200, c=colors) # 画散点图,大小为 200
plt.xlabel('数量') # 横坐标轴标题
plt.xticks(rotation=270)
plt.ylabel('名称') # 纵坐标轴标题
plt.savefig(f'净值散点图.png')
plt.show()
生成柱状图
import matplotlib;matplotlib.use('TkAgg')
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
zhfont1 = matplotlib.font_manager.FontProperties(fname='C:\\Windows\\Fonts\\simsun.ttc')
name_list = title_list
num_list = [float(i) for i in qy_num_1] # 单位净值
width = 0.5 # 柱子的宽度
index = np.arange(len(name_list))
plt.bar(index, num_list, width, color='steelblue', tick_label=name_list, label='单位净值')
plt.bar(index + width, qy_num_2, width, color='red', hatch='\\\\', label='累计净值')
plt.legend(['单位净值', '累计净值'], prop=zhfont1, labelspacing=1)
for a, b in zip(index, num_list): # 柱子上的数字显示
plt.text(a, b, '%.2f' % b, ha='center', va='bottom', fontsize=7)
plt.xticks(rotation=270)
plt.title('净值柱状图')
plt.ylabel('率')
plt.legend()
plt.savefig(f'净值-柱状图', bbox_inches='tight')
plt.show()
源码展示:
# !/usr/bin/nev python
# -*-coding:utf8-*-
"""ua大列表"""
USER_AGENT_LIST = [
'Mozilla/5.0 (Windows NT 6.2; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.90 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3451.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.9; rv:57.0) Gecko/20100101 Firefox/57.0',
'Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/28.0.1500.71 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.2999.0 Safari/537.36',
'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/53.0.2785.70 Safari/537.36',
'Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.4; en-US; rv:1.9.2.2) Gecko/20100316 Firefox/3.6.2',
'Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/44.0.2403.155 Safari/537.36 OPR/31.0.1889.174',
'Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; .NET CLR 1.1.4322; MS-RTC LM 8; InfoPath.2; Tablet PC 2.0)',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.100 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.106 Safari/537.36 OPR/55.0.2994.61',
'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.1 (KHTML, like Gecko) Chrome/14.0.814.0 Safari/535.1',
'Mozilla/5.0 (Macintosh; U; PPC Mac OS X; ja-jp) AppleWebKit/418.9.1 (KHTML, like Gecko) Safari/419.3',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/43.0.2357.134 Safari/537.36',
'Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; Trident/6.0; Touch; MASMJS)',
'Mozilla/5.0 (X11; Linux i686) AppleWebKit/535.21 (KHTML, like Gecko) Chrome/19.0.1041.0 Safari/535.21',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100 Safari/537.36',
'Mozilla/5.0 (Windows NT 6.2; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.90 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3451.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.9; rv:57.0) Gecko/20100101 Firefox/57.0',
'Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/28.0.1500.71 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.2999.0 Safari/537.36',
'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/53.0.2785.70 Safari/537.36',
'Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.4; en-US; rv:1.9.2.2) Gecko/20100316 Firefox/3.6.2',
'Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/44.0.2403.155 Safari/537.36 OPR/31.0.1889.174',
'Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; .NET CLR 1.1.4322; MS-RTC LM 8; InfoPath.2; Tablet PC 2.0)',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.100 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.106 Safari/537.36 OPR/55.0.2994.61',
'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.1 (KHTML, like Gecko) Chrome/14.0.814.0 Safari/535.1',
'Mozilla/5.0 (Macintosh; U; PPC Mac OS X; ja-jp) AppleWebKit/418.9.1 (KHTML, like Gecko) Safari/419.3',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/43.0.2357.134 Safari/537.36',
'Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; Trident/6.0; Touch; MASMJS)',
'Mozilla/5.0 (X11; Linux i686) AppleWebKit/535.21 (KHTML, like Gecko) Chrome/19.0.1041.0 Safari/535.21',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100 Safari/537.36',
'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4093.3 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_5) AppleWebKit/537.36 (KHTML, like Gecko; compatible; Swurl) Chrome/77.0.3865.120 Safari/537.36',
'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/74.0.3729.131 Safari/537.36',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4086.0 Safari/537.36',
'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:75.0) Gecko/20100101 Firefox/75.0',
'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) coc_coc_browser/91.0.146 Chrome/85.0.4183.146 Safari/537.36',
'Mozilla/5.0 (Windows; U; Windows NT 5.2; en-US) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36 VivoBrowser/8.4.72.0 Chrome/62.0.3202.84',
'Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.101 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36 Edg/87.0.664.60',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.16; rv:83.0) Gecko/20100101 Firefox/83.0',
'Mozilla/5.0 (X11; CrOS x86_64 13505.63.0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.9; rv:68.0) Gecko/20100101 Firefox/68.0',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.101 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36',
'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.198 Safari/537.36 OPR/72.0.3815.400',
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.101 Safari/537.36',
]
from requests_html import HTMLSession
import os, xlwt, xlrd, random
from xlutils.copy import copy
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.font_manager import FontProperties # 字体库
from lxml import etree
session = HTMLSession()
class DFSpider(object):
def __init__(self):
# 起始的请求地址----初始化
self.start_url = 'http://fund.eastmoney.com/fund.html'
def parse_start_url(self):
"""
发送请求,获取响应
:return:
"""
# 请求头
headers = {
# 通过随机模块提供的随机拿取数据方法
'User-Agent': random.choice(USER_AGENT_LIST)
}
# 发送请求,获取响应字节数据
response = session.get(self.start_url, headers=headers).content
"""序列化对象,将字节内容数据,经过转换,变成可进行xpath操作的对象"""
response = etree.HTML(response)
"""调用提取第二份响应数据"""
self.parse_response_data(response)
def parse_response_data(self, response):
"""
解析response响应数据,提取
:return:
"""
# 股票名称
name_list_1 = response.xpath('//tbody/tr/td[5]/nobr/a[1]/text()')
# 昨日单位净值
num_1_list_data_1 = response.xpath('//tbody/tr/td[6]/text()')
# 昨日累计净值
num_2_list_data_1 = response.xpath('//tbody/tr/td[7]/text()')
"""调用解析三个列表的方法"""
self.for_parse_three_list(name_list_1, num_1_list_data_1, num_2_list_data_1)
def for_parse_three_list(self, name_list, num_1_list, num_2_list):
"""
解析循环,
:param name_list: 股票名称
:param num_1_list: 昨日单位净值
:param num_2_list: 昨日累计净值
:return:
"""
# 遍历解析3个列表数据
for a, b, c in zip(name_list, num_1_list, num_2_list):
# 构造保存的excel字典数据
dict_data = {
# 会根据该字典的key值创建工作簿的sheet名
'股票数据': [a, b, c]
}
"""调用解析保存excel表格方法"""
self.parse_save_excel(dict_data)
print(f'企业:{a}----采集完成!')
"""数据采集完成,调用分析生成图像方法"""
self.parse_random_data(name_list, num_1_list, num_2_list)
def parse_random_data(self, name_list, num_1_list, num_2_list):
"""
随机抽取15条数据,进行分析
:return:
"""
# 存放随机号码的列表
index_list = []
for i in range(15):
# 随机抽取15个数据进行分析
random_num = random.randint(0, 200)
# 将随机抽取的号码添加进入准备的列表中
index_list.append(random_num)
"""随机号码生成以后,调用解析生成四张分析图的方法"""
self.parse_img_four_func(index_list, name_list, num_1_list, num_2_list)
def parse_img_four_func(self, index_list, name_list, num_1_list, num_2_list):
"""
解析生成四张分析图
:param index_list: 随机数据的下标
:param name_list: 股票名称列表
:param num_1_list: 昨日单位净值列表
:param num_2_list: 昨日累计净值列表
:return:
"""
title_list = [] # 名称
qy_num_1 = [] # 单位净值
qy_num_2 = [] # 累计净值
for index_num in index_list:
# 企业名称列表
title_list.append(name_list[index_num])
# 昨日单位净值列表
qy_num_1.append(num_1_list[index_num])
# 昨日累计净值列表
qy_num_2.append(num_2_list[index_num])
# 第一张图:根据净值生成折线图
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
# plot中参数的含义分别是横轴值,纵轴值,线的形状,颜色,透明度,线的宽度和标签
plt.plot(title_list, qy_num_2, 'ro-', color='#4169E1', alpha=0.8, linewidth=1, label='累计净值')
plt.plot(title_list, qy_num_1, 'ro-', color='#69e141', alpha=0.8, linewidth=1, label='单位净值')
# 显示标签,如果不加这句,即使在plot中加了label='一些数字'的参数,最终还是不会显示标签
plt.legend(loc="upper right")
plt.xticks(rotation=270)
plt.xlabel('地点数量')
plt.ylabel('工作属性数量')
plt.savefig('根据净值生成折线图.png')
plt.show()
# 第二张图:根据单位净值生成饼图
addr_dict_key = title_list
addr_dict_value = qy_num_1
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
plt.rcParams['axes.unicode_minus'] = False
plt.pie(addr_dict_value, labels=addr_dict_key, autopct='%1.1f%%')
plt.title(f'单位净值对比')
plt.savefig(f'单位净值对比-饼图')
plt.show()
# 第三张图:根据累计净值生成散点图
# 这两行代码解决 plt 中文显示的问题
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
# 输入岗位地址和岗位属性数据
production = title_list
tem = qy_num_2
colors = np.random.rand(len(tem)) # 颜色数组
plt.scatter(tem, production, s=200, c=colors) # 画散点图,大小为 200
plt.xlabel('数量') # 横坐标轴标题
plt.xticks(rotation=270)
plt.ylabel('名称') # 纵坐标轴标题
plt.savefig(f'净值散点图.png')
plt.show()
# 第四张图:根据净值生成柱状图
import matplotlib;matplotlib.use('TkAgg')
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
zhfont1 = matplotlib.font_manager.FontProperties(fname='C:\\Windows\\Fonts\\simsun.ttc')
name_list = title_list
num_list = [float(i) for i in qy_num_1] # 单位净值
width = 0.5 # 柱子的宽度
index = np.arange(len(name_list))
plt.bar(index, num_list, width, color='steelblue', tick_label=name_list, label='单位净值')
plt.bar(index + width, qy_num_2, width, color='red', hatch='\\\\', label='累计净值')
plt.legend(['单位净值', '累计净值'], prop=zhfont1, labelspacing=1)
for a, b in zip(index, num_list): # 柱子上的数字显示
plt.text(a, b, '%.2f' % b以上是关于用python爬取基金网信息数据,保存到表格,并做成四种简单可视化。(爬虫之路,永无止境!)的主要内容,如果未能解决你的问题,请参考以下文章
用python爬虫爬取携程网国内租车怎么获取所在地址的车辆信息、价格还有评分并安型号分类提取出来?