手写数字识别基于matlab GUI SVM手写数字识别含Matlab源码 676期
Posted 紫极神光
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了手写数字识别基于matlab GUI SVM手写数字识别含Matlab源码 676期相关的知识,希望对你有一定的参考价值。
一、简介
支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。
1 数学部分
1.1 二维空间
2 算法部分
二、源代码
function varargout = DigitClassifyUI(varargin)
%
% DIGITCLASSIFYUI MATLAB code for DigitClassifyUI.fig
% DIGITCLASSIFYUI, by itself, creates a new DIGITCLASSIFYUI or raises the existing
% singleton*.
%
% H = DIGITCLASSIFYUI returns the handle to a new DIGITCLASSIFYUI or the handle to
% the existing singleton*.
%
% DIGITCLASSIFYUI(\'CALLBACK\',hObject,eventData,handles,...) calls the local
% function named CALLBACK in DIGITCLASSIFYUI.M with the given input arguments.
%
% DIGITCLASSIFYUI(\'Property\',\'Value\',...) creates a new DIGITCLASSIFYUI or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before DigitClassifyUI_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to DigitClassifyUI_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE\'s Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help DigitClassifyUI
% Last Modified by GUIDE v2.5 10-Feb-2021 18:44:08
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct(\'gui_Name\', mfilename, ...
\'gui_Singleton\', gui_Singleton, ...
\'gui_OpeningFcn\', @DigitClassifyUI_OpeningFcn, ...
\'gui_OutputFcn\', @DigitClassifyUI_OutputFcn, ...
\'gui_LayoutFcn\', [] , ...
\'gui_Callback\', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before DigitClassifyUI is made visible.
function DigitClassifyUI_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to DigitClassifyUI (see VARARGIN)
% Choose default command line output for DigitClassifyUI
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes DigitClassifyUI wait for user response (see UIRESUME)
% uiwait(handles.figure1);
global FigHandle AxesHandle RectHandle;
FigHandle = handles.output;
AxesHandle = handles.axes_write;
MouseDraw();
axis(handles.axes_write,[1 400 1 400]); % 设定图轴范围
RectHandle = rectangle(handles.axes_write,\'Position\',[80,66,240,268],\'LineStyle\',\'--\',\'EdgeColor\',\'#a9a9a9\');
% --- Outputs from this function are returned to the command line.
function varargout = DigitClassifyUI_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% --- Executes on button press in pushbutton_loadImage.
function pushbutton_loadImage_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton_loadImage (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global RectHandle;
cla(handles.axes_write, \'reset\')
set(handles.axes_write, \'Visible\',\'off\');
set(handles.output, \'Pointer\', \'arrow\');
axis(handles.axes_write,[1 400 1 400]); % 设定图轴范围
RectHandle = rectangle(handles.axes_write,\'Position\',[80,66,240,268],\'LineStyle\',\'--\',\'EdgeColor\',\'#a9a9a9\');
% 弹出文件选择框,选择一张图片
[file,path] = uigetfile({\'*.jpg;*.jpeg;*.png;*.bmp;*.tif\',...
\'图片文件 (*.jpg,*.jpeg,*.png,*.bmp,*.tif)\'},\'选择一张图片\');
if isequal(file,0) % 若文件不存在
set(handles.edit_imagePath, \'String\',\'请选择一张图片\');
else
fileName= fullfile(path, file); % 选择的图片绝对路径
set(handles.edit_imagePath, \'String\', fileName); % 显示选择的图片路径
InputImage = imread(fileName);
image(handles.axes_raw, InputImage);
set(handles.axes_raw, \'Visible\',\'off\');
set(gcf, \'Pointer\', \'arrow\');
set(gcf, \'WindowButtonMotionFcn\', \'\')
set(gcf, \'WindowButtonUpFcn\', \'\')
% 开始执行预处理
if numel(size(InputImage))==3
InputImage = rgb2gray(InputImage); % 灰度化图片
axes(handles.axes_gray);
imshow(InputImage);
else
axes(handles.axes_gray);
imshow(InputImage);
end
% 二值化
InputImage = imbinarize(InputImage);
axes(handles.axes_binary);
imshow(InputImage);
% 特征提取
InputImage = imresize(InputImage, [28, 28]);
cellSize = [4 4];
[~, vis4x4] = extractHOGFeatures(InputImage,\'CellSize\',[4 4]);
axes(handles.axes_features);
plot(vis4x4);
load(\'trainedSvmModel.mat\',\'classifier\');
features(1, :) = extractHOGFeatures(InputImage,\'CellSize\',cellSize);
predictedLabel = predict(classifier, features);
str = string(predictedLabel);
set(handles.text_result, \'String\', str);
end
axes(handles.axes_write);
MouseDraw();
% set(gcf, \'WindowButtonDownFcn\', \'\');
% --- Executes on button press in pushbutton_load.
function pushbutton_load_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton_load (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global RectHandle;
axis(handles.axes_write,[1 400 1 400]); % 设定图轴范围
set(handles.edit_imagePath, \'String\',\'请选择一张图片\');
delete(RectHandle);
h=getframe(handles.axes_write);
imwrite(h.cdata,\'writedImage.jpg\');
InputImage = imread(\'writedImage.jpg\');
% InputImage = cat(3, InputImage,InputImage,InputImage);
image(handles.axes_raw,InputImage);
set(handles.axes_raw, \'Visible\',\'off\');
axis(handles.axes_write,[1 400 1 400]); % 设定图轴范围
RectHandle = rectangle(handles.axes_write,\'Position\',[80,66,240,268],\'LineStyle\',\'--\',\'EdgeColor\',\'#a9a9a9\');
global FigHandle
set(FigHandle, \'Pointer\', \'arrow\');
set(FigHandle, \'WindowButtonMotionFcn\', \'\')
set(FigHandle, \'WindowButtonUpFcn\', \'\')
set(FigHandle, \'WindowButtonDownFcn\', \'\');
% 开始执行预处理
if numel(size(InputImage))==3
InputImage = rgb2gray(InputImage); % 灰度化图片
axes(handles.axes_gray);
imshow(InputImage);
else
axes(handles.axes_gray);
imshow(InputImage);
end
% 二值化
InputImage = imbinarize(InputImage);
axes(handles.axes_binary);
imshow(InputImage);
% 特征提取
InputImage = imresize(InputImage, [28, 28]);
cellSize = [4 4];
[~, vis4x4] = extractHOGFeatures(InputImage,\'CellSize\',[4 4]);
axes(handles.axes_features);
plot(vis4x4);
load(\'trainedSvmModel.mat\',\'classifier\');
features(1, :) = extractHOGFeatures(InputImage,\'CellSize\',cellSize);
predictedLabel = predict(classifier, features);
str = string(predictedLabel);
set(handles.text_result, \'String\', str);
MouseDraw();
% --- Executes on button press in pushbutton_clear.
function pushbutton_clear_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton_clear (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global RectHandle;
global FigHandle
set(FigHandle, \'Pointer\', \'arrow\');
set(FigHandle, \'WindowButtonMotionFcn\', \'\')
set(FigHandle, \'WindowButtonUpFcn\', \'\')
set(FigHandle, \'WindowButtonDownFcn\', \'\');
set(handles.edit_imagePath, \'String\',\'请选择一张图片\');
set(handles.text_result, \'String\', \'None\');
cla(handles.axes_write, \'reset\')
set(handles.axes_write, \'Visible\',\'off\');
cla(handles.axes_raw, \'reset\')
set(handles.axes_raw, \'Visible\',\'off\');
cla(handles.axes_gray, \'reset\')
set(handles.axes_gray, \'Visible\',\'off\');
cla(handles.axes_binary, \'reset\')
set(handles.axes_binary, \'Visible\',\'off\');
cla(handles.axes_features, \'reset\')
set(handles.axes_features, \'Visible\',\'off\');
set(handles.output, \'Pointer\', \'arrow\');
axis(handles.axes_write,[1 400 1 400]); % 设定图轴范围
RectHandle = rectangle(handles.axes_write,\'Position\',[80,66,240,268],\'LineStyle\',\'--\',\'EdgeColor\',\'#a9a9a9\');
MouseDraw();
三、运行结果
四、备注
版本:2014a
完整代码或代写加1564658423
以上是关于手写数字识别基于matlab GUI SVM手写数字识别含Matlab源码 676期的主要内容,如果未能解决你的问题,请参考以下文章
手写数字识别基于支持向量机SVM实现手写数字识别matlab源码含GUI
手写数字识别基于matlab GUI欧拉数和二维矩阵相关系数手写数字识别含Matlab源码 1896期
手写数字识别基于matlab GUI知识库手写数字识别(写字板+图片)含Matlab源码 1227期
手写数字识别基于matlab GUI BP神经网络手写数字识别系统含Matlab源码 1639期