实验八 进程间通信

Posted 不要脸红

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了实验八 进程间通信相关的知识,希望对你有一定的参考价值。

项目 内容
这个作业属于哪个课程 Linux系统与应用
这个作业的要求在哪里 实验八作业要求
学号-姓名 18041525-石霖
作业学习目标 了解进程间通信的常用方式; 掌握管道、消息队列、信号量、共享内存实现进程间通信的方法。

1.举例说明使用匿名管道进行进程通信。

匿名管道

当进程使用 pipe 函数,就可以打开位于内核中的这个特殊“文件”。同时 pipe 函数会返回两个描述符,一个用于读,一个用于写。
如果你使用 fstat 函数来测试该描述符,可以发现此文件类型为 FIFO 。而无名管道的无名,指的就是这个虚幻的“文件”,它没有名字。

man 2 pipe 

image-20210617205253512

pipe 函数打开的文件描述符是通过参数(数组)传递出来的,而返回值表示打开成功(0)或失败 (-1)。
它的参数是一个大小为 2 的数组。此数组的第 0 个元素用来接收以读的方式打开的描述符,而第 1 个元素用来接收以写的方式打开的描述符。
也就是说, pipefd[0] 是用于读的,而 pipefd[1] 是用于写的。
打开了文件描述符后,就可以使用 read(pipefd[0]) 和 write(pipefd[1]) 来读写数据了。

img

img

如果关闭读 ( close(pipefd[0]) ) 端保留写端,继续向写端 ( pipefd[1] ) 端写数据( write 函数)的进程会收到 SIGPIPE 信号。
如果关闭写 ( close(pipefd[1]) ) 端保留读端,继续向读端 ( pipefd[0] ) 端读数据( read 函数),read 函数会返回 0.

例题:父进程 fork 出一个子进程,通过无名管道向子进程发送字符,子进程收到数据后将字符串中的小写字符转换成大写并输出。

//hellopipe.c
#include <stdio.h>
#include <unistd.h> 
#include <stdlib.h> 
#include <ctype.h> 
void child(int *fd) { 
	close(fd[1]); // 子进程关闭写端 
	char buf[64]; 
	int n = 0,i; 
	while(1) { 
		n = read(fd[0], buf, 64);//如果没有数据可读,read会阻塞;如果父进程退出,read返回0.
		for (i = 0; i < n; ++i) 
			putchar(toupper(buf[i])); 
		if (*buf == \'q\') { 
			close(fd[0]);
			exit(0);
		}
		if (n == 0) {
			puts("no data to read!");
			sleep(1);
		} 
	}
	exit(0);
}
int main() { 
	int fd[2];//作为传出参数 
	int n = 0; 
	char buf[64] = { 0 }; 
	if (pipe(fd) < 0) { 
		perror("pipe");
        return -1;
     }
	pid_t pid = fork(); 
	if (pid == 0) { 
		child(fd); 
	}
	close(fd[0]);// 父进程关闭读端 
	while (1) { 
		n = read(STDIN_FILENO, buf, 64);
		write(fd[1], buf, n); 
		if (*buf == \'q\') {
			close(fd[1]); 
			exit(0); 
		} 
	}
	return 0;
}

image-20210617205440141

image-20210617205611883

2.举例说明使用 mkfifo 命令创建命名管道以及简单演示管道如何工作。

命名管道

1.通过命令 mkfifo 创建管道

man mkfifo

image-20210617205647464

2.通过函数 mkfifo(3) 创建管道

man 3 mkfifo

image-20210617205744498

FIFO文件的特性
a) 查看文件属性
当使用 mkfifo 创建 hello 文件后,查看文件信息如下:

image-20210617210214385

某些版本的系统在 hello 文件后面还会跟着个 | 符号,像这样 hello|
b) 使用 cat 命令打印 hello 文件内容

image-20210617210243088

可以看到cat已经被堵塞了。
开启另一个终端,执行

image-20210617210304265

然后你会看到被阻塞的 cat 又继续执行完毕,在屏幕打印 “hello world” 。
如果你反过来执行上面两个命令,会发现先执行的那个总是被阻塞。

image-20210617210243088

c) fifo 文件特性
根据前面两个实验,可以总结:
(1)文件属性前面标注的文件类型是 p ,代表管道
(2)文件大小是 0
(3)fifo 文件需要有读写两端,否则在打开 fifo 文件时会阻塞
如果在 open 的时候,使用了非阻塞方式,肯定是不会阻塞的。
特别地,如果以非阻塞写的方式 open ,同时没有进程为该文件以读的方式打开,会导致 open 返回错误(-1),同时 errno 设置成ENXIO.

3.编写两个程序使用第2题中创建的管道进行通信

例题:编写两个程序,分别是发送端 pipe_send 和接收端面 pipe_recv 。程序 pipe_send 从标准输入接收字符,并发送到程序 pipe_recv ,同时 pipe_recv 将接收到的字符打印到屏幕

// pipe_send.c
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h> 
#include <fcntl.h> 
#include <stdio.h> 
	int main() { 
		char buf[64]; 
		int n = 0; 
		int fd = open("hello", O_WRONLY); 
		if (fd < 0) { 
			perror("open fifo"); 
			return -1; 
		}
		puts("has opend fifo"); 
		
		while((n = read(STDIN_FILENO, buf, 64)) > 0) { 
			write(fd, buf, n); 
			if (buf[0] == \'q\') 
				break; 
		}
	close(fd); 
	return 0; 
} 

image-20210617210504400

// pipe_recv.c 
#include <unistd.h> 
#include <sys/types.h> 
#include <sys/stat.h> 
#include <fcntl.h> 
#include <stdio.h> 
int main() { 
	char buf[64]; 
	int n = 0; 
	int fd = open("hello", O_RDONLY); 
	if (fd < 0) { 
		perror("open fifo"); 
		return -1; 
	}
	puts("has opened fifo"); 
		
	while((n = read(fd, buf, 64)) > 0) { 
		write(STDOUT_FILENO, buf, n); 
	}
		
	if (n == 0) { 
		puts("remote closed"); 
	}
	else {
		perror("read fifo"); 
		return -1; 
	}
	close(fd); 
	return 0;
}

image-20210617210557437

image-20210617210852736

现在两个终端都处于阻塞状态,在运行pipe_send的终端输入数据,然后就可以在运行的pipe_recv的终端看到相应的输出:

image-20210617210903801

使用组合按键结束上述进程。

4.编写两个程序分别通过指定的键值创建 IPC 内核对象,以及获取该指定键值的 IPC 内核对象。

IPC 内核对象

每个 IPC 内核对象都是位于内核空间中的一个结构体。具体的对于共享内存、消息队列和信号量,他们在内核空间中都有对应的结构体来描述。
当你使用 get 后缀创建内核对象时,内核中就会为它开辟一块内存保存它。只要你不显式删除该内核对象,它就永远位于内核空间中,除非你关机重启。

img

进程空间的高 1G 空间( 3GB-4GB )是内核空间,该空间中保存了所有的 IPC 内核对象。
上图给出不同的 IPC 内核对象在内存中的布局(以数组的方式),实际操作系统的实现并不一定是数组,也可能是链表或者其它数据结构等等。
每个内核对象都有自己的 id 号(数组的索引)。此 id 号可以被用户空间使用。所以只要用户空间知道了内核对象的 id 号,就可以操控内核对象了。
为了能够得到内核对象的 id 号,用户程序需要提供键值—— key ,它的类型是 key_t ( int 整型)。
系统调用函数( shmget , msgget 和 semget )根据 key ,就可以查找到你需要的内核 id号。
在内核创建完成后,就已经有一个唯一的 key 值和它绑定起来了,也就是说 key 和内核对象是一 一对应的关系。(key = 0为特殊的键,它不能用来查找内核对象)

创建 IPC 内核对象

man 2 shmget

image-20210617211005139

man 2 msgget

image-20210617211037768

man 2 semget

在创建 IPC 内核对象时,用户程序一定需要提供 key 值才行。
实际上,创建 IPC 内核对象的函数和获取内核对象 id 的函数是一样的,都是使用 get 后缀函数。
比如在键值 0x8888 上创建 ipc 内核对象, 并获取其 id ,应该像下面这样:

// 在 0x8888 这个键上创建内核对象,权限为 0644,如果已经存在就返回错误。int id = shmget(0x8888, 4096, IPC_CREAT | IPC_EXCL | 0644);int id = msgget(0x8888, IPC_CREAT | IPC_EXCL | 0644); int id = semget(0x8888, 1, IPC_CREAT | IPC_EXCL | 0644); // 第二个参数表示创建几个信号量

例题:程序 ipccreate 用于在指定的键值上创建 ipc 内核对象。使用格式为 ./ipccreate ,比如./ipccreate 0 0x8888 表示在键值 0x8888 上创建共享内存。

//ipccreate.c #include <unistd.h> #include <sys/ipc.h>#include <sys/shm.h> #include <sys/msg.h>#include <sys/sem.h> #include <stdio.h> #include <stdlib.h> #include <string.h> int main(int argc, char* argv[]) {	if (argc < 3) { 		printf("%s <ipc type> <key>\\n", argv[0]);		return -1; 	}	key_t key = strtoll(argv[2], NULL, 16);//key 	char type = argv[1][0];// 	char buf[64]; 	int id; 	if (type == \'0\') {//创建共享内存 		id = shmget(key, getpagesize(), IPC_CREAT | IPC_EXCL | 0644); 		strcpy(buf, "share memory"); 	}	else if (type == \'1\') {//创建消息队列 		id = msgget(key, IPC_CREAT | IPC_EXCL | 0644); 		strcpy(buf, "message queue"); 	}	else if (type == \'2\') {//创建信号量 		id = semget(key, 5, IPC_CREAT | IPC_EXCL | 0644); 		strcpy(buf, "semaphore");	}	else {		printf("type must be 0, 1, or 2\\n"); 		return -1;	}	if (id < 0) { 		perror("get error"); 		return -1;	}	printf("create %s at 0x%x, id = %d\\n", buf, key, id);	return 0; }

image-20210617211151668

image-20210617211304335

获取ipc内核对象

程序 ipcget 用于在指定的键值上获取 ipc 内核对象的 id 号。
使用格式为 ./ipcget ,比如./ipcget 0 0x8888 表示获取键值 0x8888 上的共享内存 id 号。

//ipcget.c #include <unistd.h> #include <sys/ipc.h> #include <sys/shm.h> #include <sys/msg.h> #include <sys/sem.h> #include <stdio.h>#include <stdlib.h> #include <string.h> int main(int argc, char* argv[]) { 	if (argc < 3) { 		printf("%s <ipc type> <key>\\n", argv[0]); 		return -1; 	}	key_t key = strtoll(argv[2], NULL, 16); 	char type = argv[1][0]; 	char buf[64]; 	int id; 	if (type == \'0\') { 		id = shmget(key, 0, 0); 		strcpy(buf, "share memory"); 	}	else if (type == \'1\') { 		id = msgget(key, 0); 		strcpy(buf, "message queue");	}	else if (type == \'2\') {		id = semget(key, 0, 0);		strcpy(buf, "semaphore"); 	}	else {		printf("type must be 0, 1, or 2\\n"); 		return -1;	}	if (id < 0) { 		perror("get error"); 		return -1;	}	printf("get %s at 0x%x, id = %d\\n", buf, key, id);	return 0; }

image-20210617211438258

image-20210617211539816

5.编写一个程序可以用来创建、删除内核对象,也可以挂接、卸载共享内存,还可以打印、设置内核对象信息。

共享内存

前面已经知道如何创建内核对象,接下来分别了解三种内核对象的操作:

man 2 shmop

image-20210617211608137

man 2 shmctl

image-20210617211636201

例题:编写一个程序 shmctl 可以用来创建、删除内核对象,也可以挂接、卸载共享内存,还可以打印、设置内核对象信息。具体使用方法具体见下面的说明:

./shmctl -c : 创建内核对象。./shmctl -d : 删除内核对象。./shmctl -v : 显示内核对象信息。./shmctl -s : 设置内核对象(将权限设置为 0600 )。./shmctl -a : 挂接和卸载共享内存(挂接 5 秒后,再执行 shmdt ,然后退出)。//shmctl.c #include <unistd.h> #include <sys/ipc.h> #include <sys/shm.h> #include <stdio.h> #include <time.h>#include <stdlib.h>#include <string.h>#define ASSERT(res) if((res)<0){perror(__FUNCTION__);exit(-1);} // 打印 ipc_perm void printPerm(struct ipc_perm *perm) { 	printf("euid of owner = %d\\n", perm->uid);	printf("egid of owner = %d\\n", perm->gid); 	printf("euid of creator = %d\\n", perm->cuid); 	printf("egid of creator = %d\\n", perm->cgid); 	printf("mode = 0%o\\n", perm->mode);}// 打印 ipc 内核对象信息void printShmid(struct shmid_ds *shmid) {	printPerm(&shmid->shm_perm); 	printf("segment size = %ld\\n", shmid->shm_segsz); 	printf("last attach time = %s", ctime(&shmid->shm_atime));	printf("last detach time = %s", ctime(&shmid->shm_dtime)); 	printf("last change time = %s", ctime(&shmid->shm_ctime)); 	printf("pid of creator = %d\\n", shmid->shm_cpid); 	printf("pid of last shmat/shmdt = %d\\n", shmid->shm_lpid); 	printf("No. of current attaches = %ld\\n", shmid->shm_nattch);}// 创建 ipc 内核对象void create() { 	int id = shmget(0x8888, 123, IPC_CREAT | IPC_EXCL | 0664); 	printf("create %d\\n", id); 	ASSERT(id); }// IPC_STAT 命令使用,用来获取 ipc 内核对象信息 void show() { 	int id = shmget(0x8888, 0, 0);	ASSERT(id); 	struct shmid_ds shmid; 	ASSERT(shmctl(id, IPC_STAT, &shmid));	printShmid(&shmid);}// IPC_SET 命令使用,用来设置 ipc 内核对象信息 void set() { 	int id = shmget(0x8888, 123, IPC_CREAT | 0664);	ASSERT(id); 	struct shmid_ds shmid;    ASSERT(shmctl(id, IPC_STAT, &shmid));	shmid.shm_perm.mode = 0600; 	ASSERT(shmctl(id, IPC_SET, &shmid)); 	printf("set %d\\n", id); }// IPC_RMID 命令使用,用来删除 ipc 内核对象 void rm() { 	int id = shmget(0x8888, 123, IPC_CREAT | 0664); 	ASSERT(id); 	ASSERT(shmctl(id, IPC_RMID, NULL)); 	printf("remove %d\\n", id); }// 挂接和卸载 void at_dt() { 	int id = shmget(0x8888, 123, IPC_CREAT | 0664); 	ASSERT(id); char *buf = shmat(id, NULL, 0);	if (buf == (char*)-1) ASSERT(-1); 	printf("shmat %p\\n", buf); 	sleep(5); // 等待 5 秒后,执行 shmdt 	ASSERT(shmdt(buf)); 	printf("shmdt %p\\n", buf); }int main(int argc, char *argv[]) { 	if (argc < 2) {	printf("usage: %s <option -c -v -s -d -a>\\n", argv[0]); 	return -1; 	}	printf("I\'m %d\\n", getpid()); 	if (!strcmp(argv[1], "-c")) { 		create(); 	}	else if (!strcmp(argv[1], "-v")) { 		show(); 	}	else if (!strcmp(argv[1], "-s")) {		set(); 	}	else if (!strcmp(argv[1], "-d")) {		rm();	}	else if (!strcmp(argv[1], "-a")) { 		at_dt(); 	}	return 0;}

image-20210617211740083

image-20210617211928193

先在另一个终端执行 ./shmctl -a ,然后(5s内)立即在当前终端执行 ./shmctl -v

image-20210617212100959

image-20210617212115355

先在另一个终端执行 ./shmctl -a ,运行结束后,然后在当前终端执行 ./shmctl -v

image-20210617212136608

image-20210617212149441

6.编写两程序分别用于向消息队列发送数据和接收数据。 msg_send 程序定义了一个结构体 Msg ,消息正文部分是结构体 Person 。该程序向消息队列发送了 10 条消息。

消息队列

消息队列本质上是位于内核空间的链表,链表的每个节点都是一条消息。
每一条消息都有自己的消息类型,消息类型用整数来表示,
而且必须大于 0.每种类型的消息都被对应的链表所维护,
下图 展示了内核空间的一个消息队列:

img

其中数字 1 表示类型为 1 的消息,数字2、3、4 类似。彩色块表示消息数据,它们被挂在对应类型的链表上。
值得注意的是,刚刚说过没有消息类型为 0 的消息,
实际上,消息类型为 0 的链表记录了所有消息加入队列的顺序,其中红色箭头表示消息加入的顺序。

消息队列相关的函数

man 2 msgop

image-20210617212224913

消息数据格式

无论你是发送还是接收消息,消息的格式都必须按照规范来。简单的说,它一般长成下面这个样子

struct Msg{ 	long type; // 消息类型。这个是必须的,而且值必须 > 0,这个值被系统使用 	// 消息正文,多少字节随你而定 	// ... }

例题:程序 msg_send 和 msg_recv 分别用于向消息队列发送数据和接收数据。 msg_send 程序定义了一个结构体 Msg ,消息正文部分是结构体 Person 。该程序向消息队列发送了 10 条消息。

// msg_send.c #include <unistd.h> #include <sys/ipc.h>#include <sys/msg.h> #include <stdio.h>#include <stdlib.h>#define ASSERT(prompt,res) if((res)<0){perror(#prompt);exit(-1);} typedef struct { 	char name[20]; 	int age; }Person;typedef struct { 	long type; 	Person person;}Msg;int main(int argc, char *argv) {	int id = msgget(0x8888, IPC_CREAT | 0664); 	ASSERT(msgget, id); 	Msg msg[10] = { 	{1, {"Luffy",17}},    {1, {"Zoro",19}},     {2, {"Nami",18}},    {2, {"Usopo",17}},    {1, {"Sanji",19}},    {3, {"Chopper",15}},    {4, {"Robin",28}},    {4, {"Franky",34}},     {5, {"Brook",88}},    {6, {"Sunny",2}} }; 	int i; 	for (i = 0; i < 10; ++i) {		int res = msgsnd(id, &msg[i], sizeof(Person), 0); 	ASSERT(msgsnd, res);	}	return 0;}

image-20210617212327221

程序 msg_send 第一次运行完后,内核中的消息队列大概像下面这样:

img

msg_recv 程序接收一个参数,表示接收哪种类型的消息。比如 ./msg_recv 4 表示接收类型为 4 的消息,并打印在屏幕。

// msg_recv.c #include <unistd.h>#include <sys/types.h> #include <sys/ipc.h>#include <sys/msg.h>#include <stdio.h> #include <stdlib.h> #include <errno.h> #define ASSERT(prompt,res) if((res)<0){perror(#prompt);exit(-1);} typedef struct {	char name[20];	int age; }Person;typedef struct { 	long type;	Person person;}Msg; void printMsg(Msg *msg) {	printf("{ type = %ld, name = %s, age = %d }\\n", 		msg->type, msg->person.name, msg->person.age); }int main(int argc, char *argv[]) { 	if (argc < 2) { 		printf("usage: %s <type>\\n", argv[0]); 		return -1; 	} 	// 要获取的消息类型 	long type = atol(argv[1]); 	// 获取 ipc 内核对象 	int id = msgget(0x8888, 0); 	// 如果错误就退出 	ASSERT(msgget, id);	Msg msg; 	int res; 	while(1) { 	// 以非阻塞的方式接收类型为 type 的消息 		res = msgrcv(id, &msg, sizeof(Person), type, IPC_NOWAIT);		if (res < 0) { 		// 如果消息接收完毕就退出,否则报错并退出 			if (errno == ENOMSG) {				printf("No message!\\n");				break;			}			else {				ASSERT(msgrcv, res); 			} 		} 	// 打印消息内容		printMsg(&msg);	}	return 0; }

image-20210617212412599

先运行./msg_send,再运行./msg_recv
接收所有消息:

image-20210617212522121

接收类型为 4 的消息,这时要重新运行 ./msg_send :

image-20210617212547448

接收类型小于等于 3 的所有消息,这是不用再运行 ./msg_send :

image-20210617212708172

还有一个函数来操作消息队列内核对象的

man 2 msgctl

image-20210617212732715

7.编写程序举例说明信号量如何操作。

信号量

设置和获取信号量值的函数 semctl :

man 2 semctl

image-20210617212801985

请求和释放信号量 semop

man 2 semop

image-20210617212823948

struct sembuf { 	unsigned short sem_num; /* semaphore number */ 	short sem_op; /* semaphore operation */ 	short sem_flg; /* operation flags */}

例题:信号量操作 示例

//semop.c #include <unistd.h> #include <sys/ipc.h> #include <sys/sem.h>#include <stdio.h>#include <stdlib.h> #define R0 0#define R1 1 #define R2 2 void printSem(int id) { 	unsigned short vals[3] = { 0 };	semctl(id, 3, GETALL, vals); 	printf("R0 = %d, R1= %d, R2 = %d\\n\\n", vals[0], vals[1], vals[2]); }int main() { 	int id = semget(0x8888, 3, IPC_CREAT | IPC_EXCL | 0664);		// 打印信号量值 	puts("信号量初始值(默认值)"); 	printSem(id); 		// 1. 设置第 2 个信号量值	puts("1. 设置第 2 个信号量(R2)值为 20"); 	semctl(id, 2, SETVAL, 20); 	printSem(id); 		// 2. 同时设置 3 个信号量的值 	puts("2. 同时设置 3 个信号量的值为 12, 5, 9");	unsigned short vals[3] = {12, 5, 9}; 	semctl(id, 0, SETALL, vals); printSem(id);		// 3. 请求 2 个 R0 资源 	puts("3. 请求 2 个 R0 资源"); 	struct sembuf op1 = {0, -2, 0};	semop(id, &op1, 1); 	printSem(id);		// 4. 请求 3 个 R1 和 5 个 R2 	puts("4. 请求 3 个 R1 和 5 个 R2");	struct sembuf ops1[2] = { {1, -3, 0}, {2, -5, 0} };	semop(id, ops1, 2);	printSem(id); 		// 5. 释放 2 个 R1 	puts("5. 释放 2 个 R1"); 	struct sembuf op2 = {1, 2, 0};	semop(id, &op2, 1);	printSem(id); 		// 6. 释放 1 个 R0, 1 个 R1,3 个 R2 	puts("6. 释放 1 个 R0, 1 个 R1,3 个 R2"); 	struct sembuf ops2[3] = { {0, 1, 0}, {1, 1, 0}, {2, 3, 0} };	semop(id, ops2, 3); 	printSem(id); 		// 7. 删除 ipc 内核对象 	puts("7. 删除 ipc 内核对象"); 	semctl(id, 0, IPC_RMID); 	return 0; }

image-20210617212908083

image-20210617212945461

8.编写程序使用信号量实现父子进程之间的同步,防止父子进程抢夺 CPU。

例题:使用信号量实现父子进程之间的同步,防止父子进程抢夺 CPU 。

#include<stdio.h> #include<stdlib.h>#include<sys/ipc.h>#include<sys/sem.h> static int semid; static void sem_set(){	if(semctl(semid,0,SETVAL,1)==-1)    { 		perror("semctl"); 		exit(1);	} }static void sem_p(){	struct sembuf op = {0,-1,0};	if(semop(semid,&op,1) == -1){		perror("semop"); 		exit(1);	} }static void sem_v(){	struct sembuf op = {0,1,0}; 	if(semop(semid,&op,1) == -1){		perror("semop"); 		exit(1); 	}}static void sem_del(){	if(semctl(semid,0,IPC_RMID) == -1){ 		perror("semctl");		exit(1);	}}int main(){	int i;	pid_t pid;	char ch = \'C\'; 	semid = semget((key_t)1000,1,0664|IPC_CREAT); 	if(semid == -1){ 	perror("semget"); 	exit(1); }	sem_set();	pid = fork();	if(pid == -1){ 	sem_del(); 	exit(1); }	else if (pid == 0)		ch = \'Z\';	else		ch = \'C\'; 	srand((unsigned int)getpid());	for(i=0;i<8;i++) 	{ 		sem_p();// 		printf("%c",ch); 		fflush(stdout); 		sleep(rand()%4); 		printf("%c",ch); 		fflush(stdout); 		sleep(1); 		sem_v();//	}	if(pid > 0) 	{		wait(NULL); 		sem_del();	}	printf("\\n");	return 0;}

image-20210617213042382

image-20210617213223790

这里可以看到字符是成对出现的,如果修改程序把63行 sem_p(); 和70行 sem_v();
注释掉,在编译运行会发现字符可能就不会成对出现了,这里就是用信号量来帮我们实现进程间的同步的。

以上是关于实验八 进程间通信的主要内容,如果未能解决你的问题,请参考以下文章

实验八 进程间通信

实验八进程间通信

实验八进程间通信

实验八 进程间通信

实验八 进程间通信

实验八进程间通信