OpenCV Java入门四 认出这是“一张脸”
Posted TGITCIC
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了OpenCV Java入门四 认出这是“一张脸”相关的知识,希望对你有一定的参考价值。
经过前三个教程,我们可以知道了OpenCV的基本使用了。
今天,我们就要讲OpenCV中认出,这是一个人脸是怎么做的。
MatOfRect.detectMultiScale函数
OpenCV用的是detectMultiScale来认出这是一个脸的。记得,这只是认出这是一个脸,而不是这个脸是谁。
这个脸是谁我们会逐步展开,前面勿求夯实基础。
detectMultiScale需要两个参数(Mat src, MatOfRect objDetections);
- 第一个函数,是传入的图片,带有人脸的图片;
- 第二个函数,是把所有的这个图片里的人脸得到并输出到MatOfRect对象里;
比如说下面这个图片里,一共有5个脸,我们把脸一个个识别出来并在脸上用方框把它们标记出来。
然后用我们前面教程中提到的ImageViewer类来显示带有“标识”的人脸。
全代码
ImageViewer.java
再上一遍
package org.mk.opencv;
import org.mk.opencv.util.OpenCVUtil;
import org.opencv.core.Mat;
import javax.swing.*;
import java.awt.*;
public class ImageViewer
private JLabel imageView;
private Mat image;
private String windowName;
private JFrame frame = null;
public ImageViewer()
frame = createJFrame(windowName, 800, 600);
public ImageViewer(Mat image)
this.image = image;
/**
* @param image 要显示的mat
* @param windowName 窗口标题
*/
public ImageViewer(Mat image, String windowName)
frame = createJFrame(windowName, 1024, 768);
this.image = image;
this.windowName = windowName;
public void setTitle(String windowName)
this.windowName = windowName;
public void setImage(Mat image)
this.image = image;
/**
* 图片显示
*/
public void imshow()
setSystemLookAndFeel();
frame.pack();
frame.setLocationRelativeTo(null);
frame.setVisible(true);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);// 用户点击窗口关闭
if (image != null)
Image loadedImage = OpenCVUtil.matToImage(image);
// JFrame frame = createJFrame(windowName, image.width(), image.height());
imageView.setIcon(new ImageIcon(loadedImage));
frame.pack();
// frame.setLocationRelativeTo(null);
// frame.setVisible(true);
// frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);// 用户点击窗口关闭
private void setSystemLookAndFeel()
try
UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
catch (ClassNotFoundException e)
e.printStackTrace();
catch (InstantiationException e)
e.printStackTrace();
catch (IllegalAccessException e)
e.printStackTrace();
catch (UnsupportedLookAndFeelException e)
e.printStackTrace();
private JFrame createJFrame(String windowName, int width, int height)
JFrame frame = new JFrame(windowName);
imageView = new JLabel();
final JScrollPane imageScrollPane = new JScrollPane(imageView);
imageScrollPane.setPreferredSize(new Dimension(width, height));
frame.add(imageScrollPane, BorderLayout.CENTER);
frame.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);
return frame;
DetectFace.java
这个是主类。
老三样:
- 加载opencv_java343.dll;
- 加载人脸分拣器;
- 创建Mat对象;
然后我们开始把脸识别出来:
- 使用detectMultiScale把传入的Mat对象中含有脸的那些全部识别出来;
- 识别出来后我们可以使用for (Rect rect : objDetections.toArray())把所有的脸枚举出来;
- 使用Imgproc.rectangle在每个识别出来的脸上用“绿”色把它们一个个框出来;
- 使用ImageViewer的.imgShow显示标识出来的脸;
package org.mk.opencv;
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.MatOfRect;
import org.opencv.core.Point;
import org.opencv.core.Rect;
import org.opencv.core.Scalar;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import org.opencv.objdetect.CascadeClassifier;
public class DetectFace
public static void main(String[] args)
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
//Mat src = Imgcodecs.imread("/Users/chrishu123126.com/opt/img/detect-face-4.jpg");
Mat src = Imgcodecs.imread("D:\\\\opencv-demo\\\\green-arrow.jpg");
if (src.empty())
System.out.println("图片路径不正确");
return;
Mat dst = dobj(src);
ImageViewer imageViewer = new ImageViewer(dst, "识脸");
imageViewer.imshow();
private static Mat dobj(Mat src)
Mat dst = src.clone();
CascadeClassifier objDetector = new CascadeClassifier(
"D:\\\\opencvinstall\\\\build\\\\install\\\\etc\\\\lbpcascades\\\\lbpcascade_frontalface.xml");
MatOfRect objDetections = new MatOfRect();
objDetector.detectMultiScale(dst, objDetections);
if (objDetections.toArray().length <= 0)
return src;
for (Rect rect : objDetections.toArray())
Imgproc.rectangle(dst, new Point(rect.x, rect.y), new Point(rect.x + rect.width, rect.y + rect.width),
new Scalar(0, 255, 0), 1); //new Scalar(0, 255, 0), 1)绿 //new Scalar(0, 0, 255), 1)红 //new Scalar(255, 0, 0), 1)蓝
return dst;
运行
运行效果如下
把识别出来的脸存成文件
我们现在把识别出来的5张脸存成5个jpg图片。
制作一个写盘函数,很简单。
private static void outputFace(String outputDir, Mat face)
long millSecs = System.currentTimeMillis();
int temp = (int) (Math.random() * 10000);
StringBuffer outputImgName = new StringBuffer();
outputImgName.append(outputDir).append("/").append(millSecs).append(temp).append(".jpg");
if (face != null)
Imgcodecs.imwrite(outputImgName.toString(), face);
logger.info(">>>>>>write image into->" + outputDir);
然后我们在我们的原来的代码中加入这个函数
package org.mk.opencv;
import org.apache.log4j.Logger;
import org.mk.opencv.face.FaceRecogFromFiles;
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.MatOfRect;
import org.opencv.core.Point;
import org.opencv.core.Rect;
import org.opencv.core.Scalar;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import org.opencv.objdetect.CascadeClassifier;
public class DetectFace
private static Logger logger = Logger.getLogger(DetectFace.class);
private final static String faceOutPutDir = "d://opencv-demo/face";
public static void main(String[] args)
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
// Mat src =
// Imgcodecs.imread("/Users/chrishu123126.com/opt/img/detect-face-4.jpg");
Mat src = Imgcodecs.imread("D:\\\\opencv-demo\\\\green-arrow.jpg");
if (src.empty())
System.out.println("图片路径不正确");
return;
Mat dst = dobj(src);
ImageViewer imageViewer = new ImageViewer(dst, "识脸");
imageViewer.imshow();
private static Mat dobj(Mat src)
Mat dst = src.clone();
CascadeClassifier objDetector = new CascadeClassifier(
"D:\\\\opencvinstall\\\\build\\\\install\\\\etc\\\\lbpcascades\\\\lbpcascade_frontalface.xml");
MatOfRect objDetections = new MatOfRect();
objDetector.detectMultiScale(dst, objDetections);
if (objDetections.toArray().length <= 0)
return src;
for (Rect rect : objDetections.toArray())
Imgproc.rectangle(dst, new Point(rect.x, rect.y), new Point(rect.x + rect.width, rect.y + rect.width),
new Scalar(0, 255, 0), 1); // new Scalar(0, 255, 0), 1)绿 //new Scalar(0, 0, 255), 1)红 //new
// Scalar(255, 0, 0), 1)蓝
outputFace(faceOutPutDir, src.submat(rect));
return dst;
private static void outputFace(String outputDir, Mat face)
long millSecs = System.currentTimeMillis();
int temp = (int) (Math.random() * 10000);
StringBuffer outputImgName = new StringBuffer();
outputImgName.append(outputDir).append("/").append(millSecs).append(temp).append(".jpg");
if (face != null)
Imgcodecs.imwrite(outputImgName.toString(), face);
logger.info(">>>>>>write image into->" + outputDir);
运行DetectFace.java,我们可以在D:\\opencv-demo\\face目录中得到5个写出的人脸的图片。
以上是关于OpenCV Java入门四 认出这是“一张脸”的主要内容,如果未能解决你的问题,请参考以下文章