Java多线程并发面试题
Posted 赵广陆
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Java多线程并发面试题相关的知识,希望对你有一定的参考价值。
目录
- 1 Java中实现多线程有几种方法
- 2 线程池详解与配置
- 3 notify()和notifyAll()有什么区别?
- 4 sleep()和wait() 有什么区别?
- 5 volatile是什么?可以保证有序性吗?
- 6 Thread 类中的start() 和 run() 方法有什么区别?
- 7 为什么wait, notify 和 notifyAll这些方法不在thread类里面?
- 8 为什么wait和notify方法要在同步块中调用?
- 9 Java中interrupted 和 isInterruptedd方法的区别?
- 10 Java中synchronized 和 ReentrantLock 有什么不同?
- 11 有三个线程T1,T2,T3,如何保证顺序执行?
- 12 SynchronizedMap和ConcurrentHashMap有什么区别?
- 13 什么是线程安全
- 14 Thread类中的yield方法有什么作用?
- 15 Java线程池中submit() 和 execute()方法有什么区别?
- 16 说一说自己对于 synchronized 关键字的了解
- 17 说说自己是怎么使用 synchronized 关键字,在项目中用到了吗synchronized关键字
- 18 什么是线程安全?Vector是一个线程安全类吗?
- 19 volatile关键字的作用?
- 20 简述一下你对线程池的理解
- 21 JAVA 后台线程
- 22 什么是乐观锁
- 23 什么是悲观锁
- 24 什么是自旋锁
- 25 Synchronized 同步锁
- 26 ReentrantLock
- 27 Condition 类和 Object 类锁方法区别区别
- 28 tryLock 和 lock 和 lockInterruptibly 的区别
- 29 Semaphore 信号量
- 30 Semaphore 与 ReentrantLock 区别
- 31 可重入锁(递归锁)
- 32 ReadWriteLock 读写锁
- 33 共享锁和独占锁
- 34 重量级锁(Mutex Lock)
- 35 轻量级锁
- 36 偏向锁
- 37 分段锁
- 38 锁优化
- 39 死锁
- 40 什么是多线程中的上下文切换?
- 41 死锁与活锁的区别,死锁与饥饿的区别?
- 42 Java 中用到的线程调度算法是什么?
- 43 什么是线程组,为什么在 Java 中不推荐使用?
- 44 为什么使用 Executor 框架?
- 45 在 Java 中 Executor 和 Executors 的区别?
1 Java中实现多线程有几种方法
关于线程写了好多的文章当时都比较零散,现在汇总一下看看能有多少知识点
继承Thread类;
实现Runnable接口;
实现Callable接口通过FutureTask包装器来创建Thread线程;
使用ExecutorService、Callable、Future实现有返回结果的多线程(也就是使用了ExecutorService来管理前面的三种方式)。
2 线程池详解与配置
3 notify()和notifyAll()有什么区别?
notify可能会导致死锁,而notifyAll则不会任何时候只有一个线程可以获得锁,也就是说只有一个线程可以运行synchronized 中的代码使用notifyall,可以唤醒所有处于wait状态的线程,使其重新进入锁的争夺队列中,而notify只能唤醒一个。wait() 应配合while循环使用,不应使用if,务必在wait()调用前后都检查条件,如果不满足,必须调用notify()唤醒另外的线程来处理,自己继续wait()直至条件满足再往下执行。
notify() 是对notifyAll()的一个优化,但它有很精确的应用场景,并且要求正确使用。不然可能导致死锁。正确的场景应该是 WaitSet中等待的是相同的条件,唤醒任一个都能正确处理接下来的事项,如果唤醒的线程无法正确处理,务必确保继续notify()下一个线程,并且自身需要重新回到WaitSet中.
4 sleep()和wait() 有什么区别?
- 对于 sleep()方法,我们首先要知道该方法是属于 Thread 类中的。而 wait()方法,则是属于Object 类中的。
- sleep()方法导致了程序暂停执行指定的时间,让出 cpu 该其他线程,但是他的监控状态依然保持者,当指定的时间到了又会自动恢复运行状态
- 在调用 sleep()方法的过程中, 线程不会释放对象锁。
- 而当调用 wait()方法的时候,线程会放弃对象锁,进入等待此对象的等待锁定池,只有针对此对象调用 notify()方法后本线程才进入对象锁定池准备获取对象锁进入运行状态。
5 volatile是什么?可以保证有序性吗?
一旦一个共享变量(类的成员变量、类的静态成员变量)被volatile修饰之后,那么就具备了两层语义:
1)保证了不同线程对这个变量进行操作时的可见性,即一个线程修改了某个变量的值,这新值对其他线程来说是立即可见的,volatile关键字会强制将修改的值立即写入主存。
2)禁止进行指令重排序。
volatile 不是原子性操作
什么叫保证部分有序性?
当程序执行到volatile变量的读操作或者写操作时,在其前面的操作的更改肯定全部已经进行,且结果已经对后面的操作可见;在其后面的操作肯定还没有进行;
x = 2; //语句1
y = 0; //语句2
flag = true; //语句3
x = 4; //语句4
y = -1; //语句5
由于flag变量为volatile变量,那么在进行指令重排序的过程的时候,不会将语句3放到语句1、语句2前面,也不会讲语句3放到语句4、语句5后面。但是要注意语句1和语句2的顺序、语句4和语句5的顺序是不作任何保证的。
使用 Volatile 一般用于 状态标记量 和 单例模式的双检锁
6 Thread 类中的start() 和 run() 方法有什么区别?
start()方法被用来启动新创建的线程,而且start()内部调用了run()方法,这和直接调用run()方法的效果不一样。当你调用run()方法的时候,只会是在原来的线程中调用,没有新的线程启动,start()方法才会启动新线程 。
7 为什么wait, notify 和 notifyAll这些方法不在thread类里面?
明显的原因是JAVA提供的锁是对象级的而不是线程级的
,每个对象都有锁,通过线程获得。如果线程需要等待某些锁那么调用对象中的wait()方法就有意义了。如果wait()方法定义在Thread类中,线程正在等待的是哪个锁就不明显了。简单的说,由于wait,notify和notifyAll都是锁级别的操作,所以把他们定义在Object类中因为锁属于对象 。
8 为什么wait和notify方法要在同步块中调用?
-
只有在调用线程拥有某个对象的独占锁时,才能够调用该对象的wait(),notify()和notifyAll()方法。
-
如果你不这么做,你的代码会抛出IllegalMonitorStateException异常。
-
还有一个原因是为了避免wait和notify之间产生竞态条件。
wait()方法强制当前线程释放对象锁。这意味着在调用某对象的wait()方法之前,当前线程必须已经获得该对象的锁。因此,线程必须在某个对象的同步方法或同步代码块中才能调用该对象的wait()方法。
在调用对象的notify()和notifyAll()方法之前,调用线程必须已经得到该对象的锁。因此,必须在某个对象的同步方法或同步代码块中才能调用该对象的notify()或notifyAll()方法。
调用wait()方法的原因通常是,调用线程希望某个特殊的状态(或变量)被设置之后再继续执行。调用notify()或notifyAll()方法的原因通常是,调用线程希望告诉其他等待中的线程:“特殊状态已经被设置”。这个状态作为线程间通信的通道,它必须是一个可变的共享状态(或变量)。
9 Java中interrupted 和 isInterruptedd方法的区别?
interrupted() 和 isInterrupted()的主要区别是前者会将中断状态清除而后者不会。Java多线程的中断机
制是用内部标识来实现的,调用Thread.interrupt()来中断一个线程就会设置中断标识为true。
当中断线程调用静态方法Thread.interrupted()来检查中断状态时,中断状态会被清零。
而非静态方法isInterrupted()用来查询其它线程的中断状态且不会改变中断状态标识。简单的说就是任何抛出
InterruptedException异常的方法都会将中断状态清零。无论如何,一个线程的中断状态有有可能被其
它线程调用中断来改变 。
10 Java中synchronized 和 ReentrantLock 有什么不同?
相似点:
这两种同步方式有很多相似之处,它们都是加锁方式同步,而且都是阻塞式的同步,也就是说当如果一个线程获得了对象锁,进入了同步块,其他访问该同步块的线程都必须阻塞在同步块外面等待,而进行线程阻塞和唤醒的代价是比较高的.
区别:
这两种方式最大区别就是对于Synchronized来说,它是java语言的关键字,是原生语法层面的互斥,需要jvm实现。而ReentrantLock它是JDK 1.5之后提供的API层面的互斥锁,需要lock()和unlock()方法配合try/finally语句块来完成。Synchronized进过编译,会在同步块的前后分别形成monitorenter和monitorexit这个两个字节码指令。在执行monitorenter指令时,首先要尝试获取对象锁。如果这个对象没被锁定,或者当前线程已经拥有了那个对象锁,把锁的计算器加1,相应的,在执行monitorexit指令时会将锁计算器就减1,当计算器为0时,锁就被释放了。如果获取对象锁失败,那当前线程就要阻塞,直到对象锁被另一个线程释
放为止 。
由于ReentrantLock是java.util.concurrent包下提供的一套互斥锁,相比Synchronized,ReentrantLock类提供了一些高级功能,主要有以下3项:
1.等待可中断,持有锁的线程长期不释放的时候,正在等待的线程可以选择放弃等待,这相当于Synchronized来说可以避免出现死锁的情况。
2.公平锁,多个线程等待同一个锁时,必须按照申请锁的时间顺序获得锁,Synchronized锁非公平锁,ReentrantLock默认的构造函数是创建的非公平锁,可以通过参数true设为公平锁,但公平锁表现的性能不是很好。
3.锁绑定多个条件,一个ReentrantLock对象可以同时绑定对个对象 。
11 有三个线程T1,T2,T3,如何保证顺序执行?
在多线程中有多种方法让线程按特定顺序执行,你可以用线程类的join()方法在一个线程中启动另一个线程,另外一个线程完成该线程继续执行。为了确保三个线程的顺序你应该先启动最后一个(T3调用T2,T2调用T1),这样T1就会先完成而T3最后完成。
实际上先启动三个线程中哪一个都行,因为在每个线程的run方法中用join方法限定了三个线程的执行顺序
public class JoinTest2
// 1.现在有T1、T2、T3三个线程,你怎样保证T2在T1执行完后执行,T3在T2执行完后执行
public static void main(String[] args)
final Thread t1 = new Thread(new Runnable()
@Override
public void run()
System.out.println("t1");
);
final Thread t2 = new Thread(new Runnable()
@Override
public void run()
try
// 引用t1线程,等待t1线程执行完
t1.join();
catch (InterruptedException e)
e.printStackTrace();
S
ystem.out.println("t2");
);
Thread t3 = new Thread(new Runnable()
@Override
public void run()
try
// 引用t2线程,等待t2线程执行完
t2.join();
catch (InterruptedException e)
e.printStackTrace();
S
ystem.out.println("t3");
);
t3.start();//这里三个线程的启动顺序可以任意,大家可以试下!
t2.start();
t1.start();
12 SynchronizedMap和ConcurrentHashMap有什么区别?
SynchronizedMap()和Hashtable一样,实现上在调用map所有方法时,都对整个map进行同步。而ConcurrentHashMap的实现却更加精细,它对map中的所有桶加了锁。所以,只要有一个线程访问map,其他线程就无法进入map,而如果一个线程在访问ConcurrentHashMap某个桶时,其他线程,仍然可以对map执行某些操作。
所以,ConcurrentHashMap在性能以及安全性方面,明显比Collections.synchronizedMap()更加有优势。同时,同步操作精确控制到桶,这样,即使在遍历map时,如果其他线程试图对map进行数据修改,也不会抛出ConcurrentModificationException 。
13 什么是线程安全
线程安全就是说多线程访问同一代码,不会产生不确定的结果。在多线程环境中,当各线程不共享数据的时候,即都是私有(private)成员,那么一定是线程安全的。
但这种情况并不多见,在多数情况下需要共享数据,这时就需要进行适当的同步控制了。
线程安全一般都涉及到synchronized, 就是一段代码同时只能有一个线程来操作 不然中间过程可能会产生不可预制的结果。
如果你的代码所在的进程中有多个线程在同时运行,而这些线程可能会同时运行这段代码。如果每次运行结果和单线程运行的结果是一样的,而且其他的变量的值也和预期的是一样的,就是线程安全的。
14 Thread类中的yield方法有什么作用?
Yield方法可以暂停当前正在执行的线程对象,让其它有相同优先级的线程执行。它是一个静态方法而且只保证当前线程放弃CPU占用而不能保证使其它线程一定能占用CPU,执行yield()的线程有可能在进入到暂停状态后马上又被执行。
15 Java线程池中submit() 和 execute()方法有什么区别?
两个方法都可以向线程池提交任务,execute()方法的返回类型是void,它定义在Executor接口中, 而submit()方法可以返回持有计算结果的Future对象,它定义在ExecutorService接口中,它扩展了Executor接口,其它线程池类像ThreadPoolExecutor和
ScheduledThreadPoolExecutor都有这些方法 。
16 说一说自己对于 synchronized 关键字的了解
synchronized关键字解决的是多个线程之间访问资源的同步性,synchronized关键字可以保证被它修饰的方法或者代码块在任意时刻只能
有一个线程执行。
另外,在 Java 早期版本中,synchronized属于重量级锁,效率低下,因为监视器锁(monitor)是依赖于底层的操作系统的 Mutex Lock 来实现的,Java 的线程是映射到操作系统的原生线程之上的。
如果要挂起或者唤醒一个线程,都需要操作系统帮忙完成,而操作系统实现线程之间的切换时需要从用户态转换到内核态,这个状态之间的
转换需要相对比较长的时间,时间成本相对较高,这也是为什么早期的synchronized 效率低的原因。
庆幸的是在 Java 6 之后 Java 官方对从 JVM 层面对synchronized 较大优化,所以现在的 synchronized 锁效率也优化得很不错了。JDK1.6对锁的实现引入了大量的优化,如自旋锁、适应性自旋锁、锁消除、锁粗化、偏向锁、轻量级锁等技术来减少锁操作的开销 。
17 说说自己是怎么使用 synchronized 关键字,在项目中用到了吗synchronized关键字
最主要的三种使用方式
修饰实例方法: 作用于当前对象实例加锁,进入同步代码前要获得当前对象实例的锁
修饰静态方法: 也就是给当前类加锁,会作用于类的所有对象实例,因为静态成员不属于任何一个实例对象,是类成员( static 表明这是该类的一个静态资源,不管new了多少个对象,只有一份)。所以如果一个线程A调用一个实例对象的非静态 synchronized 方法,而线程B需要调用这个实例对象所属类的静态 synchronized 方法,是允许的,不会发生互斥现象,因为访问静态 synchronized 方法占用的锁是当前类的锁,而访问非静态synchronized 方法占用的锁是当前实例对象锁。
修饰代码块: 指定加锁对象,对给定对象加锁,进入同步代码库前要获得给定对象的锁。
总结: synchronized 关键字加到 static 静态方法和 synchronized(class)代码块上都是是给 Class 类上锁。synchronized 关键字加到实例方法上是给对象实例上锁。尽量不要使用 synchronized(String a) 因为JVM中,字符串常量池具有缓存功能
18 什么是线程安全?Vector是一个线程安全类吗?
如果你的代码所在的进程中有多个线程在同时运行,而这些线程可能会同时运行这段代码。如果每次运行结果和单线程运行的结果是一样的,而且其他的变量 的值也和预期的是一样的,就是线程安全的。一个线程安全的计数器类的同一个实例对象在被多个线程使用的情况下也不会出现计算失误。很显然你可以将集合类分 成两组,线程安全和非线程安全的。Vector 是用同步方法来实现线程安全的, 而和它相似的ArrayList不是线程安全的。
19 volatile关键字的作用?
一旦一个共享变量(类的成员变量、类的静态成员变量)被volatile修饰之后,那么就具备了两层语义:
保证了不同线程对这个变量进行操作时的可见性,即一个线程修改了某个变量的值,这新值对其他线程来说是立即可见的。禁止进行指令重排序。
-
volatile本质是在告诉jvm当前变量在寄存器(工作内存)中的值是不确定的,需要从主存中读取;synchronized则是锁定当前变量,
只有当前线程可以访问该变量,其他线程被阻塞住。 -
volatile仅能使用在变量级别;synchronized则可以使用在变量、方法、和类级别的。
-
volatile仅能实现变量的修改可见性,并不能保证原子性;synchronized则可以保证变量的修改可见性和原子性。
-
volatile不会造成线程的阻塞;synchronized可能会造成线程的阻塞。
volatile标记的变量不会被编译器优化;synchronized标记的变量可以被编译器优化
20 简述一下你对线程池的理解
如果问到了这样的问题,可以展开的说一下线程池如何用、线程池的好处、线程池的启动策略)合理利用线程池能够带来三个好处。
第一:降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。
第二:提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。
第三:提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控
21 JAVA 后台线程
-
定义:守护线程–也称“服务线程”, 他是后台线程, 它有一个特性,即为用户线程 提供 公共服务, 在没有用户线程可服务时会自动离开。
-
优先级:守护线程的优先级比较低,用于为系统中的其它对象和线程提供服务。
-
设置:通过 setDaemon(true)来设置线程为“守护线程”;将一个用户线程设置为守护线程的方式是在 线程对象创建 之前 用线程对象的setDaemon 方法。
-
在 Daemon 线程中产生的新线程也是 Daemon 的。
-
线程则是 JVM 级别的,以 Tomcat 为例,如果你在 Web 应用中启动一个线程,这个线程的生命周期并不会和 Web 应用程序保持同步。也就是说,即使你停止了 Web 应用,这个线程依旧是活跃的。
-
example: 垃圾回收线程就是一个经典的守护线程,当我们的程序中不再有任何运行的Thread,程序就不会再产生垃圾,垃圾回收器也就无事可做, 所以当垃圾回收线程是 JVM 上仅剩的线程时,垃圾回收线程会自动离开。它始终在低级别的状态中运行,用于实时监控和管理系统中的可回收资源。
-
生命周期:守护进程(Daemon)是运行在后台的一种特殊进程。它独立于控制终端并且周期性地执行某种任务或等待处理某些发生的事件。也就是说守护线程不依赖于终端,但是依赖于系统,与系统“同生共死”。当 JVM 中所有的线程都是守护线程的时候, JVM 就可以退出了;如果还有一个或以上的非守护线程则 JVM 不会退出
22 什么是乐观锁
乐观锁是一种乐观思想,即认为读多写少,遇到并发写的可能性低,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,采取在写时先读出当前版本号,然后加锁操作(比较跟上一次的版本号,如果一样则更新),如果失败则要重复读-比较-写的操作。
java 中的乐观锁基本都是通过 CAS 操作实现的, CAS 是一种更新的原子操作, 比较当前值跟传入值是否一样,一样则更新,否则失败。
23 什么是悲观锁
悲观锁是就是悲观思想,即认为写多,遇到并发写的可能性高,每次去拿数据的时候都认为别人会修改,所以每次在读写数据的时候都会上锁,这样别人想读写这个数据就会 block 直到拿到锁。java中的悲观锁就是Synchronized,AQS框架下的锁则是先尝试cas乐观锁去获取锁,获取不到,才会转换为悲观锁,如 RetreenLock。
24 什么是自旋锁
自旋锁原理非常简单, 如果持有锁的线程能在很短时间内释放锁资源,那么那些等待竞争锁的线程就不需要做内核态和用户态之间的切换进入阻塞挂起状态,它们只需要等一等(自旋),等持有锁的线程释放锁后即可立即获取锁,这样就避免用户线程和内核的切换的消耗。线程自旋是需要消耗 cup 的,说白了就是让 cup 在做无用功,如果一直获取不到锁,那线程也不能一直占用 cup 自旋做无用功,所以需要设定一个自旋等待的最大时间。
如果持有锁的线程执行的时间超过自旋等待的最大时间扔没有释放锁,就会导致其它争用锁的线程在最大等待时间内还是获取不到锁,这时争用线程会停止自旋进入阻塞状态。
自旋锁的优缺点
自旋锁尽可能的减少线程的阻塞,这对于锁的竞争不激烈,且占用锁时间非常短的代码块来说性能能大幅度的提升,因为自旋的消耗会小于线程阻塞挂起再唤醒的操作的消耗,这些操作会导致线程发生两次上下文切换!但是如果锁的竞争激烈,或者持有锁的线程需要长时间占用锁执行同步块,这时候就不适合使用自旋锁了,因为自旋锁在获取锁前一直都是
占用 cpu 做无用功,占着 XX 不 XX,同时有大量线程在竞争一个锁,会导致获取锁的时间很长,线程自旋的消耗大于线程阻塞挂起操作的消耗,其它需要 cup 的线程又不能获取到 cpu,造成 cpu 的浪费。所以这种情况下我们要关闭自旋锁;
自旋锁时间阈值(1.6 引入了适应性自旋锁)
自旋锁的目的是为了占着 CPU 的资源不释放,等到获取到锁立即进行处理。但是如何去选择自旋的执行时间呢?如果自旋执行时间太长,会有大量的线程处于自旋状态占用 CPU 资源,进而会影响整体系统的性能。因此自旋的周期选的额外重要!
JVM 对于自旋周期的选择, jdk1.5 这个限度是一定的写死的, 在 1.6 引入了适应性自旋锁,适应性自旋锁意味着自旋的时间不在是固定的了,而是由前一次在同一个锁上的自旋时间以及锁的拥有者的状态来决定,基本认为一个线程上下文切换的时间是最佳的一个时间,同时JVM 还针对当前 CPU 的负荷情况做了较多的优化, 如果平均负载小于 CPUs 则一直自旋, 如果有超过(CPUs/2)个线程正在自旋,则后来线程直接阻塞, 如果正在自旋的线程发现 Owner 发生了变化则延迟自旋时间(自旋计数)或进入阻塞, 如果 CPU 处于节电模式则停止自旋, 自旋时间的最坏情况是 CPU的存储延迟(CPU A 存储了一个数据,到 CPU B 得知这个数据直接的时间差) , 自旋时会适当放弃线程优先级之间的差异。
自旋锁的开启
JDK1.6 中-XX:+UseSpinning 开启;
-XX:PreBlockSpin=10 为自旋次数;
JDK1.7 后,去掉此参数,由 jvm 控制;
25 Synchronized 同步锁
synchronized 它可以把任意一个非 NULL 的对象当作锁。 他属于独占式的悲观锁,同时属于可重入锁。 Synchronized 作用范围
- 作用于方法时,锁住的是对象的实例(this);
- 当作用于静态方法时,锁住的是Class实例,又因为Class的相关数据存储在永久带PermGen(jdk1.8 则是 metaspace),永久带是全
局共享的,因此静态方法锁相当于类的一个全局锁,会锁所有调用该方法的线程; - synchronized 作用于一个对象实例时,锁住的是所有以该对象为锁的代码块。 它有多个队列,当多个线程一起访问某个对象监视器的
时候,对象监视器会将这些线程存储在不同的容器中。
Synchronized 核心组件
- Wait Set:哪些调用 wait 方法被阻塞的线程被放置在这里;
- Contention List: 竞争队列,所有请求锁的线程首先被放在这个竞争队列中;
- Entry List: Contention List 中那些有资格成为候选资源的线程被移动到 Entry List 中;
- OnDeck:任意时刻, 最多只有一个线程正在竞争锁资源,该线程被成为 OnDeck;
- Owner:当前已经获取到所资源的线程被称为 Owner;
- !Owner:当前释放锁的线程。
Synchronized 实现
-
JVM 每次从队列的尾部取出一个数据用于锁竞争候选者(OnDeck),但是并发情况下,
ContentionList 会被大量的并发线程进行 CAS 访问,为了降低对尾部元素的竞争, JVM 会将一部分线程移动到 EntryList 中作为候选竞争线程。 -
Owner 线程会在 unlock 时,将 ContentionList 中的部分线程迁移到 EntryList 中,并指定
EntryList 中的某个线程为 OnDeck 线程(一般是最先进去的那个线程)。 -
Owner 线程并不直接把锁传递给 OnDeck 线程,而是把锁竞争的权利交给 OnDeck,
OnDeck 需要重新竞争锁。这样虽然牺牲了一些公平性,但是能极大的提升系统的吞吐量,在JVM 中,也把这种选择行为称之为“竞争切换”。 -
OnDeck 线程获取到锁资源后会变为 Owner 线程,而没有得到锁资源的仍然停留在 EntryList中。如果 Owner 线程被 wait 方法阻塞,则转移到 WaitSet 队列中,直到某个时刻通过 notify或者 notifyAll 唤醒,会重新进去 EntryList 中。
-
处于 ContentionList、 EntryList、 WaitSet 中的线程都处于阻塞状态,该阻塞是由操作系统来完成的(Linux 内核下采用 pthread_mutex_lock 内核函数实现的)。
-
Synchronized 是非公平锁。 Synchronized 在线程进入 ContentionList 时, 等待的线程会先尝试自旋获取锁,如果获取不到就进入 ContentionList,这明显对于已经进入队列的线程是不公平的,还有一个不公平的事情就是自旋获取锁的线程还可能直接抢占 OnDeck 线程的锁资源。
参考: https://blog.csdn.net/zqz_zqz/article/details/70233767 -
每个对象都有个 monitor 对象, 加锁就是在竞争 monitor 对象,代码块加锁是在前后分别加
上 monitorenter 和 monitorexit 指令来实现的,方法加锁是通过一个标记位来判断的 -
synchronized 是一个重量级操作,需要调用操作系统相关接口,性能是低效的,有可能给线程加锁消耗的时间比有用操作消耗的时间更多。
-
Java1.6, synchronized 进行了很多的优化, 有适应自旋、锁消除、锁粗化、轻量级锁及偏向锁等,效率有了本质上的提高。在之后推出的 Java1.7 与 1.8 中,均对该关键字的实现机理做了优化。引入了偏向锁和轻量级锁。都是在对象头中有标记位,不需要经过操作系统加锁。
-
锁可以从偏向锁升级到轻量级锁,再升级到重量级锁。这种升级过程叫做锁膨胀;
-
JDK 1.6 中默认是开启偏向锁和轻量级锁,可以通过-XX:-UseBiasedLocking 来禁用偏向锁。
26 ReentrantLock
ReentantLock 继承接口 Lock 并实现了接口中定义的方法, 他是一种可重入锁, 除了能完
成 synchronized 所能完成的所有工作外,还提供了诸如可响应中断锁、可轮询锁请求、定时锁等避免多线程死锁的方法。
Lock 接口的主要方法
void lock(): 执行此方法时, 如果锁处于空闲状态, 当前线程将获取到锁. 相反, 如果锁已经
被其他线程持有, 将禁用当前线程, 直到当前线程获取到锁.
boolean tryLock(): 如果锁可用, 则获取锁, 并立即返回 true, 否则返回 false. 该方法和
lock()的区别在于, tryLock()只是"试图"获取锁, 如果锁不可用, 不会导致当前线程被禁用,
当前线程仍然继续往下执行代码. 而 lock()方法则是一定要获取到锁, 如果锁不可用, 就一
直等待, 在未获得锁之前,当前线程并不继续向下执行.
void unlock():执行此方法时, 当前线程将释放持有的锁. 锁只能由持有者释放, 如果线程
并不持有锁, 却执行该方法, 可能导致异常的发生.
Condition newCondition(): 条件对象,获取等待通知组件。该组件和当前的锁绑定,
当前线程只有获取了锁,才能调用该组件的 await()方法,而调用后,当前线程将缩放锁。
getHoldCount() : 查询当前线程保持此锁的次数,也就是执行此线程执行 lock 方法的次
数。
getQueueLength() : 返回正等待获取此锁的线程估计数,比如启动 10 个线程, 1 个
线程获得锁,此时返回的是 9
getWaitQueueLength: (Condition condition)返回等待与此锁相关的给定条件的线
程估计数。比如 10 个线程,用同一个 condition 对象,并且此时这 10 个线程都执行了
condition 对象的 await 方法,那么此时执行此方法返回 10hasWaiters(Condition condition): 查询是否有线程等待与此锁有关的给定条件(condition),对于指定 contidion 对象,有多少线程执行了 condition.await 方法
hasQueuedThread(Thread thread): 查询给定线程是否等待获取此锁
hasQueuedThreads(): 是否有线程等待此锁
isFair(): 该锁是否公平锁
isHeldByCurrentThread(): 当前线程是否保持锁锁定,线程的执行 lock 方法的前后分
别是 false 和 true
isLock(): 此锁是否有任意线程占用
lockInterruptibly() : 如果当前线程未被中断,获取锁
tryLock() : 尝试获得锁,仅在调用时锁未被线程占用,获得锁
tryLock(long timeout TimeUnit unit): 如果锁在给定等待时间内没有被另一个线程保持,
则获取该锁。
非公平锁
JVM 按随机、就近原则分配锁的机制则称为不公平锁, ReentrantLock 在构造函数中提供了是否公平锁的初始化方式,默认为非公平锁。 非公平锁实际执行的效率要远远超出公平锁,除非程序有特殊需要,否则最常用非公平锁的分配机制。
公平锁
公平锁指的是锁的分配机制是公平的,通常先对锁提出获取请求的线程会先被分配到锁,
ReentrantLock 在构造函数中提供了是否公平锁的初始化方式来定义公平锁。
27 Condition 类和 Object 类锁方法区别区别
- Condition 类的 awiat 方法和 Object 类的 wait 方法等效
- Condition 类的 signal 方法和 Object 类的 notify 方法等效
- Condition 类的 signalAll 方法和 Object 类的 notifyAll 方法等效
- ReentrantLock 类可以唤醒指定条件的线程,而 object 的唤醒是随机的
28 tryLock 和 lock 和 lockInterruptibly 的区别
- tryLock 能获得锁就返回 true,不能就立即返回 false, tryLock(long timeout,TimeUnit
unit),可以增加时间限制,如果超过该时间段还没获得锁,返回 false - lock 能获得锁就返回 true,不能的话一直等待获得锁
- lock 和 lockInterruptibly,如果两个线程分别执行这两个方法,但此时中断这两个线程,
lock 不会抛出异常,而 lockInterruptibly 会抛出异常。
29 Semaphore 信号量
Semaphore 是一种基于计数的信号量。它可以设定一个阈值,基于此,多个线程竞争获取许可信号,做完自己的申请后归还,超过阈值后,线程申请许可信号将会被阻塞。 Semaphore 可以用来构建一些对象池,资源池之类的, 比如数据库连接池
实现互斥锁(计数器为 1)我们也可以创建计数为 1 的 Semaphore,将其作为一种类似互斥锁的机制,这也叫二元信号量,表示两种互斥状态。
代码实现
// 创建一个计数阈值为 5 的信号量对象
// 只能 5 个线程同时访问
Semaphore semp = new Semaphore(5);
try // 申请许可
semp.acquire();
try
// 业务逻辑
catch (Exception e)
finally
// 释放许可
semp.release();
catch (InterruptedException e)
30 Semaphore 与 ReentrantLock 区别
Semaphore 基本能完成 ReentrantLock 的所有工作,使用方法也与之类似,通过 acquire()与release()方法来获得和释放临界资源。经实测, Semaphone.acquire()方法默认为可响应中断锁,与 ReentrantLock.lockInterruptibly()作用效果一致,也就是说在等待临界资源的过程中可以被Thread.interrupt()方法中断。
此外, Semaphore 也实现了可轮询的锁请求与定时锁的功能,除了方法名 tryAcquire 与 tryLock不同,其使用方法与 ReentrantLock 几乎一致。 Semaphore 也提供了公平与非公平锁的机制,也可在构造函数中进行设定。
Semaphore 的锁释放操作也由手动进行,因此与 ReentrantLock 一样,为避免线程因抛出异常而无法正常释放锁的情况发生,释放锁的操作也必须在 finally 代码块中完成。
31 可重入锁(递归锁)
本文里面讲的是广义上的可重入锁,而不是单指 JAVA 下的 ReentrantLock。 可重入锁,也叫做递归锁,指的是同一线程 外层函数获得锁之后 ,内层递归函数仍然有获取该锁的代码,但不受
影响。在 JAVA 环境下 ReentrantLock 和 synchronized 都是 可重入锁。
32 ReadWriteLock 读写锁
为了提高性能, Java 提供了读写锁,在读的地方使用读锁,在写的地方使用写锁,灵活控制,如果没有写锁的情况下,读是无阻塞的,在一定程度上提高了程序的执行效率。 读写锁分为读锁和写锁,多个读锁不互斥,读锁与写锁互斥,这是由 jvm 自己控制的,你只要上好相应的锁即可。
读锁
如果你的代码只读数据,可以很多人同时读,但不能同时写,那就上读锁
写锁
如果你的代码修改数据,只能有一个人在写,且不能同时读取,那就上写锁。总之,读的时候上读锁,写的时候上写锁!Java 中 读 写 锁 有 个 接 口 java.util.concurrent.locks.ReadWriteLock , 也 有 具 体 的 实 现
ReentrantReadWriteLock。
33 共享锁和独占锁
java 并发包提供的加锁模式分为独占锁和共享锁。
独占锁
独占锁模式下,每次只能有一个线程能持有锁, ReentrantLock 就是以独占方式实现的互斥锁。独占锁是一种悲观保守的加锁策略,它避免了读/读冲突,如果某个只读线程获取锁,则其他读线程都只能等待,这种情况下就限制了不必要的并发性,因为读操作并不会影响数据的一致性。
共享锁
共享锁则允许多个线程同时获取锁,并发访问 共享资源,如: ReadWriteLock。 共享锁则是一种乐观锁,它放宽了加锁策略,允许多个执行读操作的线程同时访问共享资源。
- AQS 的内部类 Node 定义了两个常量 SHARED 和 EXCLUSIVE,他们分别标识 AQS 队列中等
待线程的锁获取模式。 - java 的并发包中提供了 ReadWriteLock,读-写锁。它允许一个资源可以被多个读操作访问,
或者被一个 写操作访问,但两者不能同时进行。
34 重量级锁(Mutex Lock)
Synchronized 是通过对象内部的一个叫做监视器锁(monitor)来实现的。但是监视器锁本质又是依赖于底层的操作系统的 Mutex Lock 来
实现的。
而操作系统实现线程之间的切换这就需要从用户态转换到核心态,这个成本非常高,状态之间的转换需要相对比较长的时间,这就是为什么
Synchronized 效率低的原因。
因此, 这种依赖于操作系统 Mutex Lock 所实现的锁我们称之为“重量级锁” 。 JDK 中对 Synchronized 做的种种优化,其核心都是为了减少
这种重量级锁的使用。
JDK1.6 以后,为了减少获得锁和释放锁所带来的性能消耗,提高性能,引入了“轻量级锁”和“偏向锁”。
35 轻量级锁
锁的状态总共有四种:无锁状态、偏向锁、轻量级锁和重量级锁。
锁升级随着锁的竞争,锁可以从偏向锁升级到轻量级锁,再升级的重量级锁(但是锁的升级是单向的,也就是说只能从低到高升级,不会出现锁的降级)。
“轻量级” 是相对于使用操作系统互斥量来实现的传统锁而言的。但是,首先需要强调一点的是,轻量级锁并不是用来代替重量级锁的,它的本意是在没有多线程竞争的前提下,减少传统的重量级锁使用产生的性能消耗。
在解释轻量级锁的执行过程之前, 先明白一点,轻量级锁所适应的场景是线程交替执行同步块的情况,如果存在同一时间访问同一锁的情
况,就会导致轻量级锁膨胀为重量级锁
36 偏向锁
Hotspot 的作者经过以往的研究发现大多数情况下锁不仅不存在多线程竞争,而且总是由同一线程多次获得。 偏向锁的目的是在某个线程获得锁之后,消除这个线程锁重入(CAS)的开销,看起来让这个线程得到了偏护。
引入偏向锁是为了在无多线程竞争的情况下尽量减少不必要的轻量级锁执行路径,因为轻量级锁的获取及释放依赖多次 CAS 原子指令, 而偏向锁只需要在置换ThreadID 的时候依赖一次 CAS 原子指令(由于一旦出现多线程竞争的情况就必须撤销偏向锁,所以偏向锁的撤销操作的性能损耗必须小于节省下来的 CAS 原子指令的性能消耗)。
上面说过, 轻量级锁是为了在线程交替执行同步块时提高性能, 而偏向锁则是在只有一个线程执行同步块时进一步提高性能
37 分段锁
分段锁也并非一种实际的锁,而是一种思想 ConcurrentHashMap 是学习分段锁的最好实践
和ConcurrentHashMap相对应的HashTable也是线程安全的,但是HashTable容器在竞争激烈的并发环境下表现出效率低下的原因,是因为所有访问HashTable的线程都必须竞争同一把锁
,那假如容器里有多把锁,每一把锁用于锁容器其中一部分数据
,那么当多线程访问容器里不同数据段的数据时
,线程间就不会存在锁竞争,从而可以有效的提高并发访问效率,这就是ConcurrentHashMap所使用的锁分段技术,首先将数据分成一段一段的存储
,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据的时候,其他段的数据也能被其他线程访问
。
38 锁优化
减少锁持有时间只用在有线程安全要求的程序上加锁
减小锁粒度将大对象(这个对象可能会被很多线程访问),拆成小对象,大大增加并行度,降低锁竞争。降低了锁的竞争,偏向锁,轻量级锁成功率才会提高。最最典型的减小锁粒度的案例就是ConcurrentHashMap。锁分离
最常见的锁分离就是读写锁 ReadWriteLock,根据功能进行分离成读锁和写锁,这样读读不互斥,读写互斥,写写互斥,即保证了线程安全,又提高了性能,具体也请查看[高并发 Java 五]JDK 并发包 1。读写分离思想可以延伸,只要操作互不影响,锁就可以分离。比如
LinkedBlockingQueue 从头部取出,从尾部放数据锁粗化通常情况下,为了保证多线程间的有效并发,会要求每个线程持有锁的时间尽量短,即在使用完公共资源后,应该立即释放锁。但是,凡事都有一个度, 如果对同一个锁不停的进行请求、同步和释放,其本身也会消耗系统宝贵的资源,反而不利于性能的优化 。
锁消除
锁消除是在编译器级别的事情。 在即时编译器时,如果发现不可能被共享的对象,则可以消除这些对象的锁操作,多数是因为程序员编码不规范引起。
参考: https://www.jianshu.com/p/39628e1180a9
39 死锁
何为死锁,就是多个线程同时被阻塞,它们中的一个或者全部都在等待某个资源被释放。
40 什么是多线程中的上下文切换?
多线程会共同使用一组计算机上的 CPU,而线程数大于给程序分配的 CPU 数量时,
为了让各个线程都有执行的机会,就需要轮转使用 CPU。不同的线程切换使用 CPU
发生的切换数据等就是上下文切换。
41 死锁与活锁的区别,死锁与饥饿的区别?
死锁:是指两个或两个以上的进程(或线程)在执行过程中,因争夺资源而造成
的一种互相等待的现象,若无外力作用,它们都将无法推进下去。
产生死锁的必要条件:
1、互斥条件:所谓互斥就是进程在某一时间内独占资源。
2、请求与保持条件:一个进程因请求资源而阻塞时,对已获得的资源保持不放。
3、不剥夺条件:进程已获得资源,在末使用完之前,不能强行剥夺。
4、循环等待条件:若干进程之间形成一种头尾相接的循环等待资源关系。
活锁:任务或者执行者没有被阻塞,由于某些条件没有满足,导致一直重复尝试,
失败,尝试,失败。活锁和死锁的区别在于,处于活锁的实体是在不断的改变状态,所谓的“活”, 而处于死锁的实体表现为等待;活锁有可能自行解开,死锁则不能。
饥饿:一个或者多个线程因为种种原因无法获得所需要的资源,导致一直无法执
行的状态。
Java 中导致饥饿的原因:
1、高优先级线程吞噬所有的低优先级线程的 CPU 时间。
2、线程被永久堵塞在一个等待进入同步块的状态,因为其他线程总是能在它之前
持续地对该同步块进行访问。
3、线程在等待一个本身也处于永久等待完成的对象(比如调用这个对象的 wait 方
法),因为其他线程总是被持续地获得唤醒。
42 Java 中用到的线程调度算法是什么?
采用时间片轮转的方式。可以设置线程的优先级,会映射到下层的系统上面的优
先级上,如非特别需要,尽量不要用,防止线程饥饿。
43 什么是线程组,为什么在 Java 中不推荐使用?
ThreadGroup 类,可以把线程归属到某一个线程组中,线程组中可以有线程对象,
也可以有线程组,组中还可以有线程,这样的组织结构有点类似于树的形式。
为什么不推荐使用?因为使用有很多的安全隐患吧,没有具体追究,如果需要使
用,推荐使用线程池。
44 为什么使用 Executor 框架?
每次执行任务创建线程 new Thread()比较消耗性能,创建一个线程是比较耗时、
耗资源的。调用 new Thread()创建的线程缺乏管理,被称为野线程,而且可以无限制的创建,线程之间的相互竞争会导致过多占用系统资源而导致系统瘫痪,还有线程之间的
频繁交替也会消耗很多系统资源。接使用 new Thread() 启动的线程不利于扩展,比如定时执行、定期执行、定时定期执行、线程中断等都不便实现。
45 在 Java 中 Executor 和 Executors 的区别?
Executors 工具类的不同方法按照我们的需求创建了不同的线程池,来满足业务的需求。
Executor 接口对象能执行我们的线程任务。
ExecutorService 接口继承了 Executor 接口并进行了扩展,提供了更多的方法我们能获得任务执行的状态并且可以获取任务的返回值。使用 ThreadPoolExecutor 可以创建自定义线程池。
Future 表示异步计算的结果,他提供了检查计算是否完成的方法,以等待计算的
完成,并可以使用 get()方法获取计算的结果。
以上是关于Java多线程并发面试题的主要内容,如果未能解决你的问题,请参考以下文章