原创大数据基础之Sparkspark读取文件split过程(即RDD分区数量)
Posted Thinking in BigData
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了原创大数据基础之Sparkspark读取文件split过程(即RDD分区数量)相关的知识,希望对你有一定的参考价值。
spark 2.1.1
spark初始化rdd的时候,需要读取文件,通常是hdfs文件,在读文件的时候可以指定最小partition数量,这里只是建议的数量,实际可能比这个要大(比如文件特别多或者特别大时),也可能比这个要小(比如文件只有一个而且很小时),如果没有指定最小partition数量,初始化完成的rdd默认有多少个partition是怎样决定的呢?
以SparkContext.textfile为例来看下代码:
org.apache.spark.SparkContext
/** * Read a text file from HDFS, a local file system (available on all nodes), or any * Hadoop-supported file system URI, and return it as an RDD of Strings. */ def textFile( path: String, minPartitions: Int = defaultMinPartitions): RDD[String] = withScope { assertNotStopped() hadoopFile(path, classOf[TextInputFormat], classOf[LongWritable], classOf[Text], minPartitions).map(pair => pair._2.toString).setName(path) } /** * Default min number of partitions for Hadoop RDDs when not given by user * Notice that we use math.min so the "defaultMinPartitions" cannot be higher than 2. * The reasons for this are discussed in https://github.com/mesos/spark/pull/718 */ def defaultMinPartitions: Int = math.min(defaultParallelism, 2) /** Get an RDD for a Hadoop file with an arbitrary InputFormat * * @note Because Hadoop‘s RecordReader class re-uses the same Writable object for each * record, directly caching the returned RDD or directly passing it to an aggregation or shuffle * operation will create many references to the same object. * If you plan to directly cache, sort, or aggregate Hadoop writable objects, you should first * copy them using a `map` function. */ def hadoopFile[K, V]( path: String, inputFormatClass: Class[_ <: InputFormat[K, V]], keyClass: Class[K], valueClass: Class[V], minPartitions: Int = defaultMinPartitions): RDD[(K, V)] = withScope { assertNotStopped() // This is a hack to enforce loading hdfs-site.xml. // See SPARK-11227 for details. FileSystem.getLocal(hadoopConfiguration) // A Hadoop configuration can be about 10 KB, which is pretty big, so broadcast it. val confBroadcast = broadcast(new SerializableConfiguration(hadoopConfiguration)) val setInputPathsFunc = (jobConf: JobConf) => FileInputFormat.setInputPaths(jobConf, path) new HadoopRDD( this, confBroadcast, Some(setInputPathsFunc), inputFormatClass, keyClass, valueClass, minPartitions).setName(path) }
可见会直接返回一个HadoopRDD,如果不传最小partition数量,会使用defaultMinPartitions(通常情况下是2),那么HadoopRDD是怎样实现的?
org.apache.spark.rdd.HadoopRDD
class HadoopRDD[K, V]( sc: SparkContext, broadcastedConf: Broadcast[SerializableConfiguration], initLocalJobConfFuncOpt: Option[JobConf => Unit], inputFormatClass: Class[_ <: InputFormat[K, V]], keyClass: Class[K], valueClass: Class[V], minPartitions: Int) extends RDD[(K, V)](sc, Nil) with Logging { ... override def getPartitions: Array[Partition] = { val jobConf = getJobConf() // add the credentials here as this can be called before SparkContext initialized SparkHadoopUtil.get.addCredentials(jobConf) val inputFormat = getInputFormat(jobConf) val inputSplits = inputFormat.getSplits(jobConf, minPartitions) val array = new Array[Partition](inputSplits.size) for (i <- 0 until inputSplits.size) { array(i) = new HadoopPartition(id, i, inputSplits(i)) } array } ... protected def getInputFormat(conf: JobConf): InputFormat[K, V] = { val newInputFormat = ReflectionUtils.newInstance(inputFormatClass.asInstanceOf[Class[_]], conf) .asInstanceOf[InputFormat[K, V]] newInputFormat match { case c: Configurable => c.setConf(conf) case _ => } newInputFormat }
决定分区数量的逻辑在getPartitions中,实际上调用的是InputFormat.getSplits,InputFormat是一个接口,
org.apache.hadoop.mapred.InputFormat
public interface InputFormat<K, V> { InputSplit[] getSplits(JobConf var1, int var2) throws IOException; RecordReader<K, V> getRecordReader(InputSplit var1, JobConf var2, Reporter var3) throws IOException; }
每种文件格式都有自己的实现类,常见的文件格式avro、orc、parquet、textfile对应的实现类为AvroInputFormat,OrcInputFormat,MapredParquetInputFormat,CombineTextInputFormat,每个实现类都有自己的split逻辑,来看下默认实现:
org.apache.hadoop.mapred.FileInputFormat
/** Splits files returned by {@link #listStatus(JobConf)} when * they‘re too big.*/ public InputSplit[] getSplits(JobConf job, int numSplits) throws IOException { FileStatus[] files = listStatus(job); // Save the number of input files for metrics/loadgen job.setLong(NUM_INPUT_FILES, files.length); long totalSize = 0; // compute total size for (FileStatus file: files) { // check we have valid files if (file.isDirectory()) { throw new IOException("Not a file: "+ file.getPath()); } totalSize += file.getLen(); } long goalSize = totalSize / (numSplits == 0 ? 1 : numSplits); long minSize = Math.max(job.getLong(org.apache.hadoop.mapreduce.lib.input. FileInputFormat.SPLIT_MINSIZE, 1), minSplitSize); // generate splits ArrayList<FileSplit> splits = new ArrayList<FileSplit>(numSplits); NetworkTopology clusterMap = new NetworkTopology(); for (FileStatus file: files) { Path path = file.getPath(); long length = file.getLen(); if (length != 0) { FileSystem fs = path.getFileSystem(job); BlockLocation[] blkLocations; if (file instanceof LocatedFileStatus) { blkLocations = ((LocatedFileStatus) file).getBlockLocations(); } else { blkLocations = fs.getFileBlockLocations(file, 0, length); } if (isSplitable(fs, path)) { long blockSize = file.getBlockSize(); long splitSize = computeSplitSize(goalSize, minSize, blockSize); long bytesRemaining = length; while (((double) bytesRemaining)/splitSize > SPLIT_SLOP) { String[] splitHosts = getSplitHosts(blkLocations, length-bytesRemaining, splitSize, clusterMap); splits.add(makeSplit(path, length-bytesRemaining, splitSize, splitHosts)); bytesRemaining -= splitSize; } if (bytesRemaining != 0) { String[] splitHosts = getSplitHosts(blkLocations, length - bytesRemaining, bytesRemaining, clusterMap); splits.add(makeSplit(path, length - bytesRemaining, bytesRemaining, splitHosts)); } } else { String[] splitHosts = getSplitHosts(blkLocations,0,length,clusterMap); splits.add(makeSplit(path, 0, length, splitHosts)); } } else { //Create empty hosts array for zero length files splits.add(makeSplit(path, 0, length, new String[0])); } } LOG.debug("Total # of splits: " + splits.size()); return splits.toArray(new FileSplit[splits.size()]); } /** * This function identifies and returns the hosts that contribute * most for a given split. For calculating the contribution, rack * locality is treated on par with host locality, so hosts from racks * that contribute the most are preferred over hosts on racks that * contribute less * @param blkLocations The list of block locations * @param offset * @param splitSize * @return array of hosts that contribute most to this split * @throws IOException */ protected String[] getSplitHosts(BlockLocation[] blkLocations, long offset, long splitSize, NetworkTopology clusterMap) throws IOException { int startIndex = getBlockIndex(blkLocations, offset); long bytesInThisBlock = blkLocations[startIndex].getOffset() + blkLocations[startIndex].getLength() - offset; //If this is the only block, just return if (bytesInThisBlock >= splitSize) { return blkLocations[startIndex].getHosts(); } long bytesInFirstBlock = bytesInThisBlock; int index = startIndex + 1; splitSize -= bytesInThisBlock; while (splitSize > 0) { bytesInThisBlock = Math.min(splitSize, blkLocations[index++].getLength()); splitSize -= bytesInThisBlock; } long bytesInLastBlock = bytesInThisBlock; int endIndex = index - 1; Map <Node,NodeInfo> hostsMap = new IdentityHashMap<Node,NodeInfo>(); Map <Node,NodeInfo> racksMap = new IdentityHashMap<Node,NodeInfo>(); String [] allTopos = new String[0]; // Build the hierarchy and aggregate the contribution of // bytes at each level. See TestGetSplitHosts.java for (index = startIndex; index <= endIndex; index++) { // Establish the bytes in this block if (index == startIndex) { bytesInThisBlock = bytesInFirstBlock; } else if (index == endIndex) { bytesInThisBlock = bytesInLastBlock; } else { bytesInThisBlock = blkLocations[index].getLength(); } allTopos = blkLocations[index].getTopologyPaths(); // If no topology information is available, just // prefix a fakeRack if (allTopos.length == 0) { allTopos = fakeRacks(blkLocations, index); } // NOTE: This code currently works only for one level of // hierarchy (rack/host). However, it is relatively easy // to extend this to support aggregation at different // levels for (String topo: allTopos) { Node node, parentNode; NodeInfo nodeInfo, parentNodeInfo; node = clusterMap.getNode(topo); if (node == null) { node = new NodeBase(topo); clusterMap.add(node); } nodeInfo = hostsMap.get(node); if (nodeInfo == null) { nodeInfo = new NodeInfo(node); hostsMap.put(node,nodeInfo); parentNode = node.getParent(); parentNodeInfo = racksMap.get(parentNode); if (parentNodeInfo == null) { parentNodeInfo = new NodeInfo(parentNode); racksMap.put(parentNode,parentNodeInfo); } parentNodeInfo.addLeaf(nodeInfo); } else { nodeInfo = hostsMap.get(node); parentNode = node.getParent(); parentNodeInfo = racksMap.get(parentNode); } nodeInfo.addValue(index, bytesInThisBlock); parentNodeInfo.addValue(index, bytesInThisBlock); } // for all topos } // for all indices return identifyHosts(allTopos.length, racksMap); }
大致过程如下:
getSplits首先会拿到所有需要读取的file列表,然后会迭代这个file列表,首先看一个file是否可以再分即isSplitable(默认是true可能被子类覆盖),如果不能再split则直接作为1个split,如果可以再split,则获取这个file的block信息,然后综合根据多个参数来计算出1个split的数据大小即splitSize,然后会将这个file的所有block划分为多个split,划分过程会考虑机架、host等因素,如果是大block,则直接作为一个split,如果是小block可能多个block合并在一个split里(这样能够尽量减少split数量),最终得到的split数量即partition数量;
注意:上边的过程可能被子类覆盖;
以上是关于原创大数据基础之Sparkspark读取文件split过程(即RDD分区数量)的主要内容,如果未能解决你的问题,请参考以下文章