redis
Posted wwwpy
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了redis相关的知识,希望对你有一定的参考价值。
redis
1 redis简介
# 1 redis存储数据是以key-value的方式存储,value有五种数据类型:string(字符串)、list(链表)、set(集合)、zset(sorted set --有序集合)和hash(哈希类型)
# 2 redis是非关系型数据库,也被称为内存数据库
# 3 redis与Memcached比较:
-1 Memcached只支持一种数据类型字符串
-2 Memcached不支持持久化(不支持存到硬盘上,只要一断电,数据就没了)
# 4 使用Redis有哪些好处?
(1) 速度快,因为数据存在内存中,类似于HashMap,HashMap的优势就是查找和操作的时间复杂度都是O(1)
(2) 支持丰富数据类型,支持string,list,set,sorted set,hash
(3) 支持事务,操作都是原子性,所谓的原子性就是对数据的更改要么全部执行,要么全部不执行
(4) 丰富的特性:可用于缓存,消息,按key设置过期时间,过期后将会自动删除
# 5 redis是单线程,单进程,不存在并发访问的问题(新版本已经不是了)
-redis是单线程为什么还这么快
-数据在内存(主要原因)
-io多路复用技术
-因为没有进程,线程间的切换
# 6 redis适合的场景
1 排行榜
2 网站访问量,文章访问量
3 缓存数据库(用的最多,就是做缓存)
4 发布订阅
5 去重
6 分布式(blpop)
...
# 7 安装
-Redis-x64-3.2.100.msi 安装包
-redis-desktop-manager-0.9.3.817.exe 等同于navicate(可视化界面)
# 8 使用
-服务端和客户端
-redis-server:服务端启动
redis-server 配置文件.conf
-redis-cli:客户端连接服务端
redis-cli -h 127.0.0.1 -p 6379
2 redis链接
pip3 install redis
python中链接redis有两种方式:
普通链接
链接池
2.1 普通链接
from redis import Redis
# 生成链接对象
conn=Redis(host=\'127.0.0.1\', port=6379) # conn=Redis()
conn.set(\'name\',\'wu\')
ret=conn.get(\'name\')
print(ret)
2.2 链接池
注意:
链接池应该为单例模式
# t_redis_pool.py
import redis
# pool必须是单例的
POOL = redis.ConnectionPool(host=\'127.0.0.1\', port=6379,max_connections=100)
# 造一个链接池,最多能存放100个连接
# t_redis_conn.py
import redis
from t_redis_pool import POOL
# 注意:直接运行包内的py文件时,该文件的导包不能用点
r = redis.Redis(connection_pool=POOL) # 从池中拿出一个连接
ret=r.get(\'name\')
print(ret)
3 String操作
3.1 存入
set(name, value, ex=None, px=None, nx=False, xx=False)
在Redis中设置值,默认,不存在则创建,存在则修改
参数:
ex,过期时间(秒)
px,过期时间(毫秒)
nx,如果设置为True,则只有name不存在时,当前set操作才执行,值存在,就修改不了,执行没效果
xx,如果设置为True,则只有name存在时,当前set操作才执行,值存在才能修改,值不存在,不会设置新值
setnx(name, value)
设置值,只有name不存在时,执行设置操作(添加),如果存在,不会修改
setex(name, value, time)
# 设置值
# 参数:
# time,过期时间(数字秒 或 timedelta对象)
psetex(name, time_ms, value)
# 设置值
# 参数:
# time_ms,过期时间(数字毫秒 或 timedelta对象
mset(*args, **kwargs)
批量设置值
如:
mset(k1=\'v1\', k2=\'v2\')
或
mget({\'k1\': \'v1\', \'k2\': \'v2\'})
3.2 获取
get(name)
获取值
mget(keys, *args)
批量获取
如:
mget(\'k1\', \'k2\')
或
r.mget([\'k3\', \'k4\'])
getset(name, value)
设置新值并获取原来的值
getrange(key, start, end)
# 获取子序列(根据字节获取,非字符)
# 参数:
# name,Redis 的 name
# start,起始位置(字节)
# end,结束位置(字节)
# 如: "刘清政" ,0-3表示 "刘"
3.3 其他
setrange(name, offset, value)
# 修改字符串内容,从指定字符串索引开始向后替换(新值太长时,则向后添加)
# 参数:
# offset,字符串的索引,字节(一个汉字三个字节)
# value,要设置的值
setbit(name, offset, value)
# 对name对应值的二进制表示的位进行操作
# 参数:
# name,redis的name
# offset,位的索引(将值变换成二进制后再进行索引)
# value,值只能是 1 或 0
# 注:如果在Redis中有一个对应: n1 = "foo",
那么字符串foo的二进制表示为:01100110 01101111 01101111
所以,如果执行 setbit(\'n1\', 7, 1),则就会将第7位设置为1,
那么最终二进制则变成 01100111 01101111 01101111,即:"goo"
getbit(name, offset)
# 获取name对应的值的二进制表示中的某位的值 (0或1)
bitcount(key, start=None, end=None)
# 获取name对应的值的二进制表示中 1 的个数
# 参数:
# key,Redis的name
# start,位起始位置
# end,位结束位置
bitop(operation, dest, *keys)
# 获取多个值,并将值做位运算,将最后的结果保存至新的name对应的值
# 参数:
# operation,AND(并) 、 OR(或) 、 NOT(非) 、 XOR(异或)
# dest, 新的Redis的name
# *keys,要查找的Redis的name
# 如:
bitop("AND", \'new_name\', \'n1\', \'n2\', \'n3\')
# 获取Redis中n1,n2,n3对应的值,然后讲所有的值做位运算(求并集),然后将结果保存 new_name 对应的值中
strlen(name)
# 返回name对应值的字节长度(一个汉字3个字节)
incr(self, name, amount=1)
# 自增 name对应的值,当name不存在时,则创建name=amount,否则,则自增。
# 参数:
# name,Redis的name
# amount,自增数(必须是整数)
# 注:同incrby
incrbyfloat(self, name, amount=1.0)
# 自增 name对应的值,当name不存在时,则创建name=amount,否则,则自增。
# 参数:
# name,Redis的name
# amount,自增数(浮点型)
decr(self, name, amount=1)
# 自减 name对应的值,当name不存在时,则创建name=amount,否则,则自减。
# 参数:
# name,Redis的name
# amount,自减数(整数)
append(key, value)
# 在redis name对应的值后面追加内容
# 参数:
key, redis的name
value, 要追加的字符串
3.4 重点方法总结
set(name, value, ex=None, px=None, nx=False, xx=False)
get(name)
mset(*args, **kwargs)
mget(keys, *args)
incr(self, name, amount=1)
decr(self, name, amount=1)
append(key, value)
4 Hash操作
4.1 常用方法
hset(name, key, value)
# name对应的hash中设置一个键值对(不存在,则创建;否则,修改)
# 参数:
# name,redis的name
# key,name对应的hash中的key
# value,name对应的hash中的value
# 注:
# hsetnx(name, key, value),当name对应的hash中不存在当前key时则创建(相当于添加)
hmset(name, mapping)
# 在name对应的hash中批量设置键值对
# 参数:
# name,redis的name
# mapping,字典,如:{\'k1\':\'v1\', \'k2\': \'v2\'}
# 如:
# r.hmset(\'xx\', {\'k1\':\'v1\', \'k2\': \'v2\'})
hget(name,key)
# 在name对应的hash中获取根据key获取value
hmget(name, keys, *args)
# 在name对应的hash中获取多个key的值
# 参数:
# name,reids对应的name
# keys,要获取key集合,如:[\'k1\', \'k2\', \'k3\']
# *args,要获取的key,如:k1,k2,k3
# 如:
# r.mget(\'xx\', [\'k1\', \'k2\'])
# 或
# print r.hmget(\'xx\', \'k1\', \'k2\')
hgetall(name) 不推荐使用
# 获取name对应hash的所有键值
print(re.hgetall(\'xxx\').get(b\'name\'))
hlen(name)
# 获取name对应的hash中键值对的个数
hkeys(name)
# 获取name对应的hash中所有的key的值
hvals(name)
# 获取name对应的hash中所有的value的值
hexists(name, key)
# 检查name对应的hash是否存在当前传入的key
hdel(name,*keys)
# 将name对应的hash中指定key的键值对删除
print(re.hdel(\'xxx\',\'sex\',\'name\'))
hincrby(name, key, amount=1)
# 自增name对应的hash中的指定key的值,不存在则创建key=amount
# 参数:
# name,redis中的name
# key, hash对应的key
# amount,自增数(整数)
hincrbyfloat(name, key, amount=1.0)
# 自增name对应的hash中的指定key的值,不存在则创建key=amount
# 参数:
# name,redis中的name
# key, hash对应的key
# amount,自增数(浮点数)
# 自增name对应的hash中的指定key的值,不存在则创建key=amount
hscan(name, cursor=0, match=None, count=None)
# 增量式迭代获取,对于数据大的数据非常有用,hscan可以实现分片的获取数据,并非一次性将数据全部获取完,从而放置内存被撑爆
# 参数:
# name,redis的name
# cursor,游标(基于游标分批取获取数据)
# match,匹配指定key,默认None 表示所有的key
# count,每次分片最少获取个数,默认None表示采用Redis的默认分片个数
# 如:
# 第一次:cursor1, data1 = r.hscan(\'xx\', cursor=0, match=None, count=None)
# 第二次:cursor2, data1 = r.hscan(\'xx\', cursor=cursor1, match=None, count=None)
# ...
# 直到返回值cursor的值为0时,表示数据已经通过分片获取完毕
hscan_iter(name, match=None, count=None)
# 利用yield封装hscan创建生成器,实现分批去redis中获取数据
# 参数:
# match,匹配指定key,默认None 表示所有的key
# count,每次分片最少获取个数,默认None表示采用Redis的默认分片个数
# 如:
# for item in r.hscan_iter(\'xx\'):
# print item
4.2 注意点
取出hash类型内所有的数据,不建议用hgetall,建议用hscan_iter
hscan_iter是分批取出,并且得到的是生成器
与f.read(),f.readline()类似
4.3 重点方法总结
hset(name, key, value)
hget(name,key)
hmset(name, mapping)
hmget(name, keys, *args)
hincrby(name, key, amount=1)
hscan_iter(name, match=None, count=None)
hgetall和hscan_iter的区别
5 List操作
5.1 常用方法
lpush(name,values)
# 在name对应的list中添加元素,每个新的元素都添加到列表的最左边
# 如:
# r.lpush(\'oo\', 11,22,33)
# 保存顺序为: 33,22,11
# 扩展:
# rpush(name, values) 表示从右向左操作
lpushx(name,value)
# 在name对应的list中添加元素,只有name已经存在时,值添加到列表的最左边
# 更多:
# rpushx(name, value) 表示从右向左操作
llen(name)
# name对应的list元素的个数
linsert(name, where, refvalue, value))
# 在name对应的列表的某一个值前或后插入一个新值
# 参数:
# name,redis的name
# where,BEFORE或AFTER(小写也可以)
# refvalue,标杆值,即:在它前后插入数据(如果存在多个标杆值,以找到的第一个为准)
# value,要插入的数据
r.lset(name, index, value)
# 对name对应的list中的某一个索引位置重新赋值
# 参数:
# name,redis的name
# index,list的索引位置
# value,要设置的值
r.lrem(name, value, num)
# 在name对应的list中删除指定的值
# 参数:
# name,redis的name
# value,要删除的值
# num, num=0,删除列表中所有的指定值;
# num=2,从前到后,删除2个;
# num=-2,从后向前,删除2个
lpop(name)
# 在name对应的列表的左侧获取第一个元素并在列表中移除,返回值则是第一个元素
# 更多:
# rpop(name) 表示从右向左操作
lindex(name, index)
在name对应的列表中根据索引获取列表元素
lrange(name, start, end)
# 在name对应的列表分片获取数据
# 参数:
# name,redis的name
# start,索引的起始位置
# end,索引结束位置 print(re.lrange(\'aa\',0,re.llen(\'aa\')))
ltrim(name, start, end)
# 在name对应的列表中移除没有在start-end索引之间的值
# 参数:
# name,redis的name
# start,索引的起始位置
# end,索引结束位置(大于列表长度,则代表不移除任何)
rpoplpush(src, dst)
# 从一个列表取出最右边的元素,同时将其添加至另一个列表的最左边
# 参数:
# src,要取数据的列表的name
# dst,要添加数据的列表的name
blpop(keys, timeout)
# 将多个列表排列,按照从左到右去pop对应列表的元素
# 参数:
# keys,redis的name的集合
# timeout,超时时间,当元素所有列表的元素获取完之后,阻塞等待列表内有数据的时间(秒), 0 表示永远阻塞
# 更多:
# r.brpop(keys, timeout),从右向左获取数据爬虫实现简单分布式:多个url放到列表里,往里不停放URL,程序循环取值,但是只能一台机器运行取值,可以把url放到redis中,多台机器从redis中取值,爬取数据,实现简单分布式
brpoplpush(src, dst, timeout=0)
# 从一个列表的右侧移除一个元素并将其添加到另一个列表的左侧
# 参数:
# src,取出并要移除元素的列表对应的name
# dst,要插入元素的列表对应的name
# timeout,当src对应的列表中没有数据时,阻塞等待其有数据的超时时间(秒),0 表示永远阻塞
自定义增量迭代
# 由于redis类库中没有提供对列表元素的增量迭代,如果想要循环name对应的列表的所有元素,那么就需要:
# 1、获取name对应的所有列表
# 2、循环列表
# 但是,如果列表非常大,那么就有可能在第一步时就将程序的内容撑爆,所有有必要自定义一个增量迭代的功能:
import redis
conn=redis.Redis(host=\'127.0.0.1\',port=6379)
# conn.lpush(\'test\',*[1,2,3,4,45,5,6,7,7,8,43,5,6,768,89,9,65,4,23,54,6757,8,68])
# conn.flushall()
def scan_list(name,count=2):
index=0
while True:
data_list=conn.lrange(name,index,count+index-1)
if not data_list:
return
index+=count
for item in data_list:
yield item
print(conn.lrange(\'test\',0,100))
for item in scan_list(\'test\',5):
print(\'---\')
print(item)
5.2 自定制分批获取
# 自定制分批取列表的数据
# conn.lpush(\'test\',*[1,2,3,4,45,5,6,7,7,8,43,5,6,768,89,9,65,4,23,54,6757,8,68])
# conn.flushall()
def scan_list(name,count=2):
index=0
while True:
data_list=conn.lrange(name,index,count+index-1)
if not data_list:
return
index+=count
for item in data_list:
yield item
# print(conn.lrange(\'test\',0,100))
for item in scan_list(\'test\',5):
print(\'---\')
print(item)
5.3 重点方法总结
lpush(name,values)
lpop(name)
blpop(keys, timeout)
lrange(name, start, end) # 左闭右闭
llen(name)
6 redsi的其他使用
delete(*names)
# 根据删除redis中的任意数据类型
exists(name)
# 检测redis的name是否存在
keys(pattern=\'*\')
# 根据模型获取redis的name
# 更多:
# KEYS * 匹配数据库中所有 key 。
# KEYS h?llo 匹配 hello , hallo 和 hxllo 等。
# KEYS h*llo 匹配 hllo 和 heeeeello 等。
# KEYS h[ae]llo 匹配 hello 和 hallo ,但不匹配 hillo
expire(name ,time)
# 为某个redis的某个name设置超时时间
rename(src, dst)
# 对redis的name重命名为
move(name, db))
# 将redis的某个值移动到指定的db下
randomkey()
# 随机获取一个redis的name(不删除)
type(name)
# 获取name对应值的类型
scan(cursor=0, match=None, count=None)
scan_iter(match=None, count=None)
# 同字符串操作,用于增量迭代获取key
7 set操作
Set操作,Set集合就是不允许重复的列表
sadd(name,values)
# name对应的集合中添加元素
scard(name)
获取name对应的集合中元素个数
sdiff(keys, *args)
在第一个name对应的集合中且不在其他name对应的集合的元素集合
sdiffstore(dest, keys, *args)
# 获取第一个name对应的集合中且不在其他name对应的集合,再将其新加入到dest对应的集合中
sinter(keys, *args)
# 获取多一个name对应集合的并集
sinterstore(dest, keys, *args)
# 获取多一个name对应集合的并集,再讲其加入到dest对应的集合中
sismember(name, value)
# 检查value是否是name对应的集合的成员
smembers(name)
# 获取name对应的集合的所有成员
smove(src, dst, value)
# 将某个成员从一个集合中移动到另外一个集合
spop(name)
# 从集合的右侧(尾部)移除一个成员,并将其返回
srandmember(name, numbers)
# 从name对应的集合中随机获取 numbers 个元素
srem(name, values)
# 在name对应的集合中删除某些值
srem(name, values)
# 在name对应的集合中删除某些值
sunion(keys, *args)
# 获取多一个name对应的集合的并集
sunionstore(dest,keys, *args)
# 获取多一个name对应的集合的并集,并将结果保存到dest对应的集合中
sscan(name, cursor=0, match=None, count=None)
sscan_iter(name, match=None, count=None)
# 同字符串的操作,用于增量迭代分批获取元素,避免内存消耗太大
有序集合,在集合的基础上,为每元素排序;元素的排序需要根据另外一个值来进行比较,所以,对于有序集合,每一个元素有两个值,即:值和分数,分数专门用来做排序。
zadd(name, *args, **kwargs)
# 在name对应的有序集合中添加元素
# 如:
# zadd(\'zz\', \'n1\', 1, \'n2\', 2)
# 或
# zadd(\'zz\', n1=11, n2=22)
zcard(name)
# 获取name对应的有序集合元素的数量
zcount(name, min, max)
# 获取name对应的有序集合中分数 在 [min,max] 之间的个数
zincrby(name, value, amount)
# 自增name对应的有序集合的 name 对应的分数
r.zrange( name, start, end, desc=False, withscores=False, score_cast_func=float)
# 按照索引范围获取name对应的有序集合的元素
# 参数:
# name,redis的name
# start,有序集合索引起始位置(非分数)
# end,有序集合索引结束位置(非分数)
# desc,排序规则,默认按照分数从小到大排序
# withscores,是否获取元素的分数,默认只获取元素的值
# score_cast_func,对分数进行数据转换的函数
# 更多:
# 从大到小排序
# zrevrange(name, start, end, withscores=False, score_cast_func=float)
# 按照分数范围获取name对应的有序集合的元素
# zrangebyscore(name, min, max, start=None, num=None, withscores=False, score_cast_func=float)
# 从大到小排序
# zrevrangebyscore(name, max, min, start=None, num=None, withscores=False, score_cast_func=float)
zrank(name, value)
# 获取某个值在 name对应的有序集合中的排行(从 0 开始)
# 更多:
# zrevrank(name, value),从大到小排序
zrangebylex(name, min, max, start=None, num=None)
# 当有序集合的所有成员都具有相同的分值时,有序集合的元素会根据成员的 值 (lexicographical ordering)来进行排序,而这个命令则可以返回给定的有序集合键 key 中, 元素的值介于 min 和 max 之间的成员
# 对集合中的每个成员进行逐个字节的对比(byte-by-byte compare), 并按照从低到高的顺序, 返回排序后的集合成员。 如果两个字符串有一部分内容是相同的话, 那么命令会认为较长的字符串比较短的字符串要大
# 参数:
# name,redis的name
# min,左区间(值)。 + 表示正无限; - 表示负无限; ( 表示开区间; [ 则表示闭区间
# min,右区间(值)
# start,对结果进行分片处理,索引位置
# num,对结果进行分片处理,索引后面的num个元素
# 如:
# ZADD myzset 0 aa 0 ba 0 ca 0 da 0 ea 0 fa 0 ga
# r.zrangebylex(\'myzset\', "-", "[ca") 结果为:[\'aa\', \'ba\', \'ca\']
# 更多:
# 从大到小排序
# zrevrangebylex(name, max, min, start=None, num=None)
zrem(name, values)
# 删除name对应的有序集合中值是values的成员
# 如:zrem(\'zz\', [\'s1\', \'s2\'])
zremrangebyrank(name, min, max)
# 根据排行范围删除
zremrangebyscore(name, min, max)
# 根据分数范围删除
zremrangebylex(name, min, max)
# 根据值返回删除
zscore(name, value)
# 获取name对应有序集合中 value 对应的分数
zinterstore(dest, keys, aggregate=None)
# 获取两个有序集合的交集,如果遇到相同值不同分数,则按照aggregate进行操作
# aggregate的值为: SUM MIN MAX
zunionstore(dest, keys, aggregate=None)
# 获取两个有序集合的并集,如果遇到相同值不同分数,则按照aggregate进行操作
# aggregate的值为: SUM MIN MAX
zscan(name, cursor=0, match=None, count=None, score_cast_func=float)
zscan_iter(name, match=None, count=None,score_cast_func=float)
# 同字符串相似,相较于字符串新增score_cast_func,用来对分数进行操作
8 事务
redis使用管道实现事务
redis-py默认在执行每次请求都会创建(连接池申请连接)和断开(归还连接池)一次连接操作,如果想要在一次请求中指定多个命令,则可以使用pipline实现一次请求指定多个命令,并且默认情况下一次pipline 是原子性操作。
# redis支持事务,使用管道实现事务
import redis
pool = redis.ConnectionPool(host=\'127.0.0.1\', port=6379)
conn = redis.Redis(connection_pool=pool)
pipe = conn.pipeline(transaction=True)
pipe.multi()
pipe.set(\'name\', \'alex\') # 把操作提交到管道
pipe.set(\'role\', \'sb\')
pipe.execute() # 执行管道内的所有操作
9 Django中使用redis
9.1 方式一
utils文件夹下,建立redis_pool.py
import redis
POOL = redis.ConnectionPool(host=\'127.0.0.1\', port=6379,password=\'1234\',max_connections=1000)
视图函数中使用:
import redis
from django.shortcuts import render,HttpResponse
from utils.redis_pool import POOL
def index(request):
conn = redis.Redis(connection_pool=POOL)
conn.hset(\'kkk\',\'age\',18)
return HttpResponse(\'设置成功\')
def order(request):
conn = redis.Redis(connection_pool=POOL)
conn.hget(\'kkk\',\'age\')
return HttpResponse(\'获取成功\')
9.2 方式二
安装django-redis模块
pip3 install django-redis
# 在django项目的settings中进行redis配置
CACHES = {
"default": {
"BACKEND": "django_redis.cache.RedisCache",
"LOCATION": "redis://127.0.0.1:6379",
"OPTIONS": {
"CLIENT_CLASS": "django_redis.client.DefaultClient",
"CONNECTION_POOL_KWARGS": {"max_connections": 100}
# "PASSWORD": "123",
}
}
}
视图函数:
1 使用cache
from django.core.cache import cache
cache.set(\'name\',user)
2 直接使用conn对象
from django_redis import get_redis_connection
conn = get_redis_connection(\'default\')
print(conn.hgetall(\'xxx\'))
10 接口缓存
# 首页轮播图数据缓存到redis中
def list(self, request, *args, **kwargs):
# response=super().list(request, *args, **kwargs)
# 把data的数据加缓存
# 1 先去缓存拿数据
banner_list=cache.get(\'banner_list\')
if not banner_list:
print(\'走数据库了\')
# 缓存中没有,去数据库拿
response = super().list(request, *args, **kwargs)
# 加到缓存
cache.set(\'banner_list\',response.data,60*60*24)
return response
return Response(data=banner_list)
11 友情链接
https://www.cnblogs.com/liuqingzheng/articles/9833534.html
以上是关于redis的主要内容,如果未能解决你的问题,请参考以下文章