大数据系统体系建设规划包括哪些内容是啥

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了大数据系统体系建设规划包括哪些内容是啥相关的知识,希望对你有一定的参考价值。

大数据系统体系建设规划包括的内容是:强化大数据技术产品研发,深化工业大数据创新应用,促进行业大数据应用发展,加快大数据产业主体培育,推进大数据标准体系建设,完善大数据产业支撑体系,提升大数据安全保障能力。

指以数据生产、采集、存储、加工、分析、服务为主,进行的相关经济活动称为大数据产业,目前我国的大数据产业体系已初具雏形,大数据系统体系的发展建设有利于全面提升我国大数据的资源掌控、技术支撑和价值挖掘各方面的能力,加快我国称为数据强国的步伐,同时有利支撑着我国成为制造强国、网络强国的建设工作。

扩展资料

大数据系统体系建设规划发展原则:

创新驱动、应用引领、开放共享、统筹协调、安全规范。

大数据系统体系建设规划发展目标:

技术产品先进可控、应用能力显著增强、生态体系繁荣发展、支撑能力不断增强、数据安全保障有力。

参考资料来源:百度百科--大数据产业发展规划 (2016-2020年)

参考技术A

很多初学者,对大数据分析的概念都是模糊不清的,大数据分析是什么,能做什么,学的时候,该按照什么线路去学习,学完往哪方面发展,很多人对于大数据分析师的印象就是坐在办公室对着电脑噼里啪啦的敲键盘,跟程序员差不多,这种想法是错误的,其实大数据分析师是一个很高大上的职业,大数据分析师通过获取必要的数据,分析这些数据,然后从数据中发现一些问题提出自己的想法,这就是一个大数据分析师的基本工作内容。

大数据工程师工作内容取决于你工作在数据流的哪一个环节。从数据上游到数据下游,大致可以分为:

数据采集 -> 数据清洗 -> 数据存储 -> 数据分析统计 -> 数据可视化 等几个方面

大数据分析工作内容当然就是使用工具组件(Spark、Flume、Kafka等)或者代码(Java、Scala等)来实现上面几个方面的功能。具体说说如下:

一、数据采集

业务系统的埋点代码时刻会产生一些分散的原始日志,可以用Flume监控接收这些分散的日志,实现分散日志的聚合,即采集。

二、数据清洗

原始的日志,数据是千奇百怪的

一些字段可能会有异常取值,即脏数据。为了保证数据下游的"数据分析统计"能拿到比较高质量的数据,需要对这些记录进行过滤或者字段数据回填。

一些日志的字段信息可能是多余的,下游不需要使用到这些字段做分析,同时也为了节省存储开销,需要删除这些多余的字段信息。

一些日志的字段信息可能包含用户敏感信息,需要做脱敏处理。如用户姓名只保留姓,名字用'*'字符替换。

三、数据存储

清洗后的数据可以落地入到数据仓库(Hive),供下游做离线分析。如果下游的"数据分析统计"对实时性要求比较高,则可以把日志记录入到kafka。

四、大数据分析统计

大数据分析是数据流的下游,消费来自上游的数据。其实就是从日志记录里头统计出各种各样的报表数据,简单的报表统计可以用sql在kylin或者hive统计,复杂的报表就需要在代码层面用Spark、Storm做统计分析。一些公司好像会有个叫BI的岗位是专门做这一块的。

五、数据可视化

用数据表格、数据图等直观的形式展示上游"大数据分析统计"的数据。一般公司的某些决策会参考这些图表里头的数据。当然,大数据平台(如CDH、FusionInsight等)搭建与维护,也可能是大数据工程师工作内容的一部分。

大数据分析师工作的流程简单分为两部分,第一部分就是获取数据,第二部分就是对数据进行处理。那么怎么获得数据呢?首先,我们要知道,获取相关的数据,是数据分析的前提。每个企业,都有自己的一套存储机制。因此,基础的SQL语言是必须的。具备基本SQL基础,再学习下其中细节的语法,基本就可以到很多数据了。当每个需求明确以后,都要根据需要,把相关的数据获取到,做基础数据。

获得了数据以后,才能够进行数据处理工作。获取数据,把数据处理成自己想要的东西,是一个关键点。很多时候,有了数据不是完成,而是分析的开始。大数据分析师最重要的工作就是把数据根据需求处理好,只有数据跟需求结合起来,才能发挥数据的价值,看到需求的问题和本质所在。如果连数据都没处理好,何谈从数据中发现问题呢?

就目前而言,大数据分析日益成为研究行业的重要研究目标。面对其高数据量、多维度与异构化的特点,以及分析方法思路的扩展,传统统计工具已经难以应对。所以我们要使用专业的大数据分析工具。大数据分析工具都有Excel、SPSS、SAS等工具。Excel、SPSS、SAS 这三者对于大数据分析师来说并不陌生。但是这三种大数据分析工具应对的数据分析的场景并不是相同的,一般来说,SPSS 轻量、易于使用,但功能相对较少,适合常规基本统计分析。而SPSS和SAS作为商业统计软件,提供研究常用的经典统计分析处理。由于SAS 功能丰富而强大,且支持编程扩展其分析能力,适合复杂与高要求的统计性分析。

以上的内容就是小编为大家讲解的大数据分析师的工作内容了,大数据分析师的工作是比较繁琐的,但是也是比较高大上的。大家在了解大数据分析工作内容的时候可以参考这篇文章,这样可以更好的理解大数据分析行业,最后感谢大家的阅读。

相关推荐:

《大数据分析师工作内容》、《转行大数据分析师后悔了》、《零基础学大数据分析现实吗》、《大数据分析要学什么》、《大数据分析方法》、《浅析大数据分析技术》、《大数据分析流程是什么》、《大数据分析十八般工具》、《大数据分析12大就业方向》、《剖析大数据分析就业前景》、《大数据分析是什么》

参考技术B .数据系统体系建设规划包括哪些内容(选题3) A.采数据 B.编代码 C.搭平台 D.建模型 确答案: A.采数据 B.编代码 C.搭平台 D.建模型
-本回答被提问者采纳
参考技术C 要建设吗

大数据培训的内容是啥都有哪些方式

一、基础部分:JAVA语言 和 LINUX系统

二、数据开发:

1、数据分析与挖掘

一般工作包括数据清洗,执行分析和数据可视化。学习Python、数据库、网络爬虫、数据分析与处理等。

大数据培训一般是指大数据开发培训。

大数据技术庞大复杂,基础的技术包含数据的采集、数据预处理、分布式存储、数据库、数据仓库、机器学习、并行计算、可视化等各种技术范畴和不同的技术层面。

2、大数据开发

数据工du程师建设和优化系统。学习hadoop、spark、storm、超zhi大集群调优、机器学习、Docker容器引擎、ElasticSearch、并发编程等;

课程学习一共分为六个阶段:



参考技术A 大数据培训课程一般会涉及数据统计、数据仓库与商务智能技术、机器学习与模式识别、HADOOP技术等。培训方式大体分为视频学习、线上直播学习、线下面授学习、双元学习模式几种方式。如需大数据培训推荐选择【达内教育】。

【达内教育】web阶段项目贯穿整个JavaWeb学习阶段。利用项目需求引申出知识点进行授课。需求引领思路,应用驱动学习。可以整体提升学员的编程思想、编码能力、实现对【Java】后台知识的熟练掌握,并为后续课程学习做铺垫。项目涉及HTTP协议、Tomcat服务器、静态Web资源开发技术、Java后台开发技术、数据库技术、手写基础框架、编程思想实践、在线支付、权限控制等重点功能点。感兴趣的话点击此处,免费学习一下

想了解更多有关大数据的相关信息,推荐咨询【达内教育】。达内与阿里、Adobe、红帽、ORACLE、微软、美国计算机行业协会(CompTIA)、百度等国际知名厂商建立了项目合作关系。共同制定行业培训标准,为达内学员提供高端技术、所学课程受国际厂商认可,让达内学员更具国际化就业竞争力。达内IT培训机构,试听名额限时抢购。官网客服尚学堂大数据学院
2020-09-07·让人人享有高品质教育尚学堂大数据学院向TA提问

一、基础部分:JAVA语言 和 LINUX系统

二、数据开发:

1、数据分析与挖掘

一般工作包括数据清洗,执行分析和数据可视化。学习Python、数据库、网络爬虫、数据分析与处理等。

大数据培训一般是指大数据开发培训。

大数据技术庞大复杂,基础的技术包含数据的采集、数据预处理、分布式存储、数据库、数据仓库、机器学习、并行计算、可视化等各种技术范畴和不同的技术层面。

2、大数据开发

数据工du程师建设和优化系统。学习hadoop、spark、storm、超zhi大集群调优、机器学习、Docker容器引擎、ElasticSearch、并发编程等;

课程学习一共分为六个阶段:



已赞过已踩过<你对这个回答的评价是?评论收起加米谷大数据科技
2018-04-28·大数据人才培养的机构加米谷大数据科技成都加米谷大数据科技有限公司是一家专注于大数据人才培养的机构。公司由来自华为、京东、星环、勤智等国内知名企业的多位技术大牛联合创办。面向社会提供大数据、人工智能等前沿技术的培训业务。向TA提问大数据开发工程师课程体系——Java部分。
第一阶段:静态网页基础
1、学习Web标准化网页制作,必备的HTML标记和属性
2、学习HTML表格、表单的设计与制作
3、学习CSS、丰富HTML网页的样式
4、通过CSS布局和定位的学习、让HTML页面布局更加美观
5、复习所有知识、完成项目布置
第二阶段:JavaSE+JavaWeb
1、掌握JAVASE基础语法
2、掌握JAVASE面向对象使用
3、掌握JAVASEAPI常见操作类使用并灵活应用
4、熟练掌握MYSQL数据库的基本操作,SQL语句
5、熟练使用JDBC完成数据库的数据操作
6、掌握线程,网络编程,反射基本原理以及使用
7、项目实战 + 扩充知识:人事管理系统
第三阶段:前端UI框架
1、JAVASCRIPT
2、掌握Jquery基本操作和使用
3、掌握注解基本概念和使用
4、掌握版本控制工具使用
5、掌握easyui基本使用
6、项目实战+扩充知识:项目案例实战
POI基本使用和通过注解封装Excel、druid连接池数据库监听,日志Log4j/Slf4j
第四阶段:企业级开发框架
1、熟练掌握spring、spring mvc、mybatis/
2、熟悉struts2
3、熟悉Shiro、redis等
4、项目实战:内容管理系统系统、项目管理平台流程引擎activity,爬虫技术nutch,lucene,webService CXF、Tomcat集群 热备 MySQL读写分离
以上Java课程共计384课时,合计48天!
大数据开发工程师课程体系——大数据部分
第五阶段:大数据前传
大数据前篇、大数据课程体系、计划介绍、大数据环境准备&搭建
第六阶段:CentOS课程体系
CentOS介绍与安装部署、CentOS常用管理命令解析、CentOS常用Shell编程命令、CentOS阶段作业与实战训练
第七阶段:Maven课程体系
Maven初识:安装部署基础概念、Maven精讲:依赖聚合与继承、Maven私服:搭建管理与应用、Maven应用:案列分析、Maven阶段作业与实战训练
第八阶段:HDFS课程体系
Hdfs入门:为什么要HDFS与概念、Hdfs深入剖析:内部结构与读写原理、Hdfs深入剖析:故障读写容错与备份机制、HdfsHA高可用与Federation联邦、Hdfs访问API接口详解、HDFS实战训练、HDFS阶段作业与实战训练
第九阶段:MapReduce课程体系
MapReduce深入剖析:执行过程详解、MapReduce深入剖析:MR原理解析、MapReduce深入剖析:分片混洗详解、MapReduce编程基础、MapReduce编程进阶、MapReduc阶段作业与实战训练
第十阶段:Yarn课程体系
Yarn原理介绍:框架组件流程调度
第十一阶段:Hbase课程体系
Yarn原理介绍:框架组件流程调度、HBase入门:模型坐标结构访问场景、HBase深入剖析:合并分裂数据定位、Hbase访问Shell接口、Hbase访问API接口、HbaseRowkey设计、Hbase实战训练
第十二阶段:MongoDB课程体系
MongoDB精讲:原理概念模型场景、MongoDB精讲:安全与用户管理、MongoDB实战训练、MongoDB阶段作业与实战训练
第十三阶段:Redis课程体系
Redis快速入门、Redis配置解析、Redis持久化RDB与AOF、Redis操作解析、Redis分页与排序、Redis阶段作业与实战训练
第十四阶段:Scala课程体系
Scala入门:介绍环境搭建第1个Scala程序、Scala流程控制、异常处理、Scala数据类型、运算符、Scala函数基础、Scala常规函数、Scala集合类、Scala类、Scala对象、Scala特征、Scala模式匹配、Scala阶段作业与实战训练
第十五阶段:Kafka课程体系
Kafka初窥门径:主题分区读写原理分布式、Kafka生产&消费API、Kafka阶段作业与实战训练
第十六阶段:Spark课程体系
Spark快速入门、Spark编程模型、Spark深入剖析、Spark深入剖析、SparkSQL简介、SparkSQL程序开发光速入门、SparkSQL程序开发数据源、SparkSQL程序开DataFrame、SparkSQL程序开发DataSet、SparkSQL程序开发数据类型、SparkStreaming入门、SparkStreaming程序开发如何开始、SparkStreaming程序开发DStream的输入源、SparkStreaming程序开发Dstream的操作、SparkStreaming程序开发程序开发--性能优化、SparkStreaming程序开发容错容灾、SparkMllib 解析与实战、SparkGraphX 解析与实战
第十七阶段:Hive课程提体系
体系结构机制场景、HiveDDL操作、HiveDML操作、HiveDQL操作、Hive阶段作业与实战训练
第十八阶段:企业级项目实战
1、基于美团网的大型离线电商数据分析平台
2、移动基站信号监测大数据
3、大规模设备运维大数据分析挖掘平台
4、基 于互联网海量数据的舆情大数据平台项目
以上大数据部分共计学习656课时,合计82天!
0基础大数据培训课程共计学习130天。
以上是大数据开发培训内容,加米谷是线下面授小班教学!
参考技术B 大数据培训课程一般会涉及数据统计、数据仓库与商务智能技术、机器学习与模式识别、HADOOP技术等。培训方式大体分为视频学习、线上直播学习、线下面授学习、双元学习模式几种方式。如需大数据培训推荐选择【达内教育】。

【达内教育】web阶段项目贯穿整个JavaWeb学习阶段。利用项目需求引申出知识点进行授课。需求引领思路,应用驱动学习。可以整体提升学员的编程思想、编码能力、实现对【Java】后台知识的熟练掌握,并为后续课程学习做铺垫。项目涉及HTTP协议、Tomcat服务器、静态Web资源开发技术、Java后台开发技术、数据库技术、手写基础框架、编程思想实践、在线支付、权限控制等重点功能点。感兴趣的话点击此处,免费学习一下

想了解更多有关大数据的相关信息,推荐咨询【达内教育】。达内与阿里、Adobe、红帽、ORACLE、微软、美国计算机行业协会(CompTIA)、百度等国际知名厂商建立了项目合作关系。共同制定行业培训标准,为达内学员提供高端技术、所学课程受国际厂商认可,让达内学员更具国际化就业竞争力。达内IT培训机构,试听名额限时抢购。
参考技术C 肯定是关于大数据或数据库整理、编程、挖掘,然后出报告。还有就是学习的工具有Hadoop、MapReduce、Sqoop、Spark、Python等。除了现场学习,现在互联网那么发达,肯定也有线上的课程,不然距离成本也好高,顾不过来的感觉…… 参考技术D

    - apache superset -

    大数据可视化
    实时展示grafana/kobana了解详情

    - 文件存储格式 -

    apache文件存储格式多样化
    列式存储格式
    内存组成(parquet)了解详情

    - apache Doris -

    基于MPP的交互式SQL数据仓库
    解决报表
    多维分析
    在线报表和分析的数据仓库系统了解详情

    - 数仓建设 -

    对大数据BI系统提供数据支撑
    OLAP方案之apache kylin
    解决OLAP场景 压秒级查询巨大Hive表

以上是关于大数据系统体系建设规划包括哪些内容是啥的主要内容,如果未能解决你的问题,请参考以下文章

大数据系统体系建设规划包括哪些内容?

大数据培训的内容是啥都有哪些方式

新时代呼唤全程数据可视化的智慧边防建设,哪些系统集成工程支撑起立体防控体系?

大数据生态技术体系都有哪些?

大数据培训课程都包含哪些内容

在部署数据中心时,需要规划以下哪些安全解决方案