Hadoop入门
Posted Diyo
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Hadoop入门相关的知识,希望对你有一定的参考价值。
第1章 大数据概论
1.1 大数据概念
大数据概念如图2-1 所示。
1.2 大数据特点(4V)
大数据特点如图2-2,2-3,2-4,2-5所示
1.3 大数据应用场景
大数据应用场景如图2-6,2-7,2-8,2-9,2-10,2-11所示
1.4 大数据发展前景
大数据发展前景如图2-12,2-13,2-14,2-15,2-16所示
图2-12 大数据发展前景之国家政策
图2-13 大数据发展前景之国际方面
图2-14 大数据发展前景之高校方面
图2-15 大数据发展前景之平均薪资
图2-16 大数据发展前景之整体薪资
1.5 大数据部门业务流程分析
大数据部门业务流程分析如图2-17所示。
图2-17 大数据部门业务流程分析
1.6 大数据部门组织结构(重点)
大数据部门组织结构,适用于大中型企业,如图2-18所示。
图2-18 大数据部门组织结构
第2章 从Hadoop框架讨论大数据生态
2.1 Hadoop是什么
2.2 Hadoop发展历史
2.3 Hadoop三大发行版本
Hadoop三大发行版本:Apache、Cloudera、Hortonworks。
Apache版本最原始(最基础)的版本,对于入门学习最好。
Cloudera在大型互联网企业中用的较多。
Hortonworks文档较好。
- Apache Hadoop
官网地址:http://hadoop.apache.org/releases.html
下载地址:https://archive.apache.org/dist/hadoop/common/
- Cloudera Hadoop
官网地址:https://www.cloudera.com/downloads/cdh/5-10-0.html
下载地址:http://archive-primary.cloudera.com/cdh5/cdh/5/
(1)2008年成立的Cloudera是最早将Hadoop商用的公司,为合作伙伴提供Hadoop的商用解决方案,主要是包括支持、咨询服务、培训。
(2)2009年Hadoop的创始人Doug Cutting也加盟Cloudera公司。Cloudera产品主要为CDH,Cloudera Manager,Cloudera Support
(3)CDH是Cloudera的Hadoop发行版,完全开源,比Apache Hadoop在兼容性,安全性,稳定性上有所增强。
(4)Cloudera Manager是集群的软件分发及管理监控平台,可以在几个小时内部署好一个Hadoop集群,并对集群的节点及服务进行实时监控。Cloudera Support即是对Hadoop的技术支持。
(5)Cloudera的标价为每年每个节点4000美元。Cloudera开发并贡献了可实时处理大数据的Impala项目。
3. Hortonworks Hadoop
官网地址:https://hortonworks.com/products/data-center/hdp/
下载地址:https://hortonworks.com/downloads/#data-platform
(1)2011年成立的Hortonworks是雅虎与硅谷风投公司Benchmark Capital合资组建。
(2)公司成立之初就吸纳了大约25名至30名专门研究Hadoop的雅虎工程师,上述工程师均在2005年开始协助雅虎开发Hadoop,贡献,,,了Hadoop80%的代码。
(3)雅虎工程副总裁、雅虎Hadoop开发团队负责人Eric Baldeschwieler出任Hortonworks的首席执行官。
(4)Hortonworks的主打产品是Hortonworks Data Platform(HDP),也同样是100%开源的产品,HDP除常见的项目外还包括了Ambari,一款开源的安装和管理系统。
(5)HCatalog,一个元数据管理系统,HCatalog现已集成到Facebook开源的Hive中。Hortonworks的Stinger开创性的极大的优化了Hive项目。Hortonworks为入门提供了一个非常好的,易于使用的沙盒。
(6)Hortonworks开发了很多增强特性并提交至核心主干,这使得Apache Hadoop能够在包括Window Server和Windows Azure在内的Microsoft Windows平台上本地运行。定价以集群为基础,每10个节点每年为12500美元。
2.4 Hadoop的优势(4高)
2.5 Hadoop组成(面试重点)
图2-21 Hadoop1.x与Hadoop2.x的区别
2.5.1 HDFS架构概述
HDFS(Hadoop Distributed File System)的架构概述,如图2-23所示。
图2-23 HDFS架构概述
2.5.2 YARN架构概述
YARN架构概述,如图2-24所示。
图2-24 YARN架构概述
2.5.3 MapReduce架构概述
MapReduce将计算过程分为两个阶段:Map和Reduce,如图2-25所示
1)Map阶段并行处理输入数据
2)Reduce阶段对Map结果进行汇总
图2-25 MapReduce架构概述
2.6 大数据技术生态体系
大数据技术生态体系如图2-26所示。
图2-26 大数据技术生态体系
图中涉及的技术名词解释如下:
1)Sqoop:Sqoop是一款开源的工具,主要用于在Hadoop、Hive与传统的数据库(mysql)间进行数据的传递,可以将一个关系型数据库(例如 :MySQL,Oracle 等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。
2)Flume:Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。
3)Kafka:Kafka是一种高吞吐量的分布式发布订阅消息系统,有如下特性:
(1)通过O(1)的磁盘数据结构提供消息的持久化,这种结构对于即使数以TB的消息存储也能够保持长时间的稳定性能。
(2)高吞吐量:即使是非常普通的硬件Kafka也可以支持每秒数百万的消息。
(3)支持通过Kafka服务器和消费机集群来分区消息。
(4)支持Hadoop并行数据加载。
4)Storm:Storm用于“连续计算”,对数据流做连续查询,在计算时就将结果以流的形式输出给用户。
5)Spark:Spark是当前最流行的开源大数据内存计算框架。可以基于Hadoop上存储的大数据进行计算。
6)Oozie:Oozie是一个管理Hdoop作业(job)的工作流程调度管理系统。
7)Hbase:HBase是一个分布式的、面向列的开源数据库。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。
8)Hive:Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的SQL查询功能,可以将SQL语句转换为MapReduce任务进行运行。 其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。
10)R语言:R是用于统计分析、绘图的语言和操作环境。R是属于GNU系统的一个自由、免费、源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具。
11)Mahout:Apache Mahout是个可扩展的机器学习和数据挖掘库。
12)ZooKeeper:Zookeeper是Google的Chubby一个开源的实现。它是一个针对大型分布式系统的可靠协调系统,提供的功能包括:配置维护、名字服务、 分布式同步、组服务等。ZooKeeper的目标就是封装好复杂易出错的关键服务,将简单易用的接口和性能高效、功能稳定的系统提供给用户。
2.7 推荐系统框架图
推荐系统项目架构如图2-27所示。
图2-27 推荐系统项目架构
第3章 Hadoop运行环境搭建(开发重点)
3.1 虚拟机环境准备
1. 克隆虚拟机
2. 修改克隆虚拟机的静态IP
3. 修改主机名
4. 关闭防火墙
5. 创建atguigu用户
6. 配置atguigu用户具有root权限(详见《尚硅谷大数据技术之Linux》)
7.在/opt目录下创建文件夹
(1)在/opt目录下创建module、software文件夹
[atguigu@hadoop101 opt]$ sudo mkdir module
[atguigu@hadoop101 opt]$ sudo mkdir software
(2)修改module、software文件夹的所有者cd
[atguigu@hadoop101 opt]$ sudo chown atguigu:atguigu module/ software/
[atguigu@hadoop101 opt]$ ll
总用量 8
drwxr-xr-x. 2 atguigu atguigu 4096 1月 17 14:37 module
drwxr-xr-x. 2 atguigu atguigu 4096 1月 17 14:38 software
3.2 安装JDK
1. 卸载现有JDK
(1)查询是否安装Java软件:
[atguigu@hadoop101 opt]$ rpm -qa | grep java
(2)如果安装的版本低于1.7,卸载该JDK:
[atguigu@hadoop101 opt]$ sudo rpm -e 软件包
(3)查看JDK安装路径:
[atguigu@hadoop101 ~]$ which java
2. 用SecureCRT工具将JDK导入到opt目录下面的software文件夹下面,如图2-28所示
图2-28 导入JDK
“alt+p”进入sftp模式,如图2-29所示
图2-29 进入sftp模式
选择jdk1.8拖入,如图2-30,2-31所示
图2-30 拖入jdk1.8
图2-31 拖入jdk1.8完成
3.在Linux系统下的opt目录中查看软件包是否导入成功
[atguigu@hadoop101 opt]$ cd software/ [atguigu@hadoop101 software]$ ls hadoop-2.7.2.tar.gz jdk-8u144-linux-x64.tar.gz
4.解压JDK到/opt/module目录下
[atguigu@hadoop101 software]$ tar -zxvf jdk-8u144-linux-x64.tar.gz -C /opt/module/
5. 配置JDK环境变量
(1)先获取JDK路径
[atguigu@hadoop101 jdk1.8.0_144]$ pwd /opt/module/jdk1.8.0_144
(2)打开/etc/profile文件
[atguigu@hadoop101 software]$ sudo vi /etc/profile
在profile文件末尾添加JDK路径
#JAVA_HOME export JAVA_HOME=/opt/module/jdk1.8.0_144 export PATH=$PATH:$JAVA_HOME/bin
(3)保存后退出
:wq
(4)让修改后的文件生效
[atguigu@hadoop101 jdk1.8.0_144]$ source /etc/profile
6. 测试JDK是否安装成功
[atguigu@hadoop101 jdk1.8.0_144]# java -version java version "1.8.0_144"
注意:重启(如果java -version可以用就不用重启)
[atguigu@hadoop101 jdk1.8.0_144]$ sync [atguigu@hadoop101 jdk1.8.0_144]$ sudo reboot
3.3 安装Hadoop
0. Hadoop下载地址:
https://archive.apache.org/dist/hadoop/common/hadoop-2.7.2/
- 用SecureCRT工具将hadoop-2.7.2.tar.gz导入到opt目录下面的software文件夹下面
切换到sftp连接页面,选择Linux下编译的hadoop jar包拖入,如图2-32所示
图2-32 拖入hadoop的tar包
图2-33 拖入Hadoop的tar包成功
2.进入到Hadoop安装包路径下
[atguigu@hadoop101 ~]$ cd /opt/software/
3.解压安装文件到/opt/module下面
[atguigu@hadoop101 software]$ tar -zxvf hadoop-2.7.2.tar.gz -C /opt/module/
4.查看是否解压成功
[atguigu@hadoop101 software]$ ls /opt/module/
hadoop-2.7.2
5. 将Hadoop添加到环境变量
(1)获取Hadoop安装路径
[atguigu@hadoop101 hadoop-2.7.2]$ pwd
/opt/module/hadoop-2.7.2
(2)打开/etc/profile文件
[atguigu@hadoop101 hadoop-2.7.2]$ sudo vi /etc/profile
在profile文件末尾添加JDK路径:(shitf+g)
##HADOOP_HOME
export HADOOP_HOME=/opt/module/hadoop-2.7.2
export PATH=$PATH:$HADOOP_HOME/bin
export PATH=$PATH:$HADOOP_HOME/sbin
(3)保存后退出
:wq
(4)让修改后的文件生效
[atguigu@ hadoop101 hadoop-2.7.2]$ source /etc/profile
6. 测试是否安装成功
[atguigu@hadoop101 hadoop-2.7.2]$ hadoop version
Hadoop 2.7.2
7. 重启(如果Hadoop命令不能用再重启)
[atguigu@ hadoop101 hadoop-2.7.2]$ sync
[atguigu@ hadoop101 hadoop-2.7.2]$ sudo reboot
3.4 Hadoop目录结构
1、查看Hadoop目录结构
[atguigu@hadoop101 hadoop-2.7.2]$ ll
总用量 52
drwxr-xr-x. 2 atguigu atguigu 4096 5月 22 2017 bin
drwxr-xr-x. 3 atguigu atguigu 4096 5月 22 2017 etc
drwxr-xr-x. 2 atguigu atguigu 4096 5月 22 2017 include
drwxr-xr-x. 3 atguigu atguigu 4096 5月 22 2017 lib
drwxr-xr-x. 2 atguigu atguigu 4096 5月 22 2017 libexec
-rw-r--r--. 1 atguigu atguigu 15429 5月 22 2017 LICENSE.txt
-rw-r--r--. 1 atguigu atguigu 101 5月 22 2017 NOTICE.txt
-rw-r--r--. 1 atguigu atguigu 1366 5月 22 2017 README.txt
drwxr-xr-x. 2 atguigu atguigu 4096 5月 22 2017 sbin
drwxr-xr-x. 4 atguigu atguigu 4096 5月 22 2017 share
2、重要目录
(1)bin目录:存放对Hadoop相关服务(HDFS,YARN)进行操作的脚本
(2)etc目录:Hadoop的配置文件目录,存放Hadoop的配置文件
(3)lib目录:存放Hadoop的本地库(对数据进行压缩解压缩功能)
(4)sbin目录:存放启动或停止Hadoop相关服务的脚本
(5)share目录:存放Hadoop的依赖jar包、文档、和官方案例
第4章 Hadoop运行模式
Hadoop运行模式包括:本地模式、伪分布式模式以及完全分布式模式。
Hadoop官方网站:http://hadoop.apache.org/
4.1 本地运行模式
4.1.1 官方Grep案例
1. 创建在hadoop-2.7.2文件下面创建一个input文件夹
[atguigu@hadoop101 hadoop-2.7.2]$ mkdir input
2. 将Hadoop的xml配置文件复制到input
[atguigu@hadoop101 hadoop-2.7.2]$ cp etc/hadoop/*.xml input
3. 执行share目录下的MapReduce程序
[atguigu@hadoop101 hadoop-2.7.2]$ bin/hadoop jar
share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.2.jar grep input output \'dfs[a-z.]+\'
4. 查看输出结果
[atguigu@hadoop101 hadoop-2.7.2]$ cat output/*
4.1.2 官方WordCount案例
1. 创建在hadoop-2.7.2文件下面创建一个wcinput文件夹
[atguigu@hadoop101 hadoop-2.7.2]$ mkdir wcinput
2. 在wcinput文件下创建一个wc.input文件
[atguigu@hadoop101 hadoop-2.7.2]$ cd wcinput
[atguigu@hadoop101 wcinput]$ touch wc.input
3. 编辑wc.input文件
[atguigu@hadoop101 wcinput]$ vi wc.input
在文件中输入如下内容
hadoop yarn
hadoop mapreduce
atguigu
atguigu
保存退出::wq
4. 回到Hadoop目录/opt/module/hadoop-2.7.2
5. 执行程序
[atguigu@hadoop101 hadoop-2.7.2]$ hadoop jar
share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.2.jar wordcount wcinput wcoutput
6. 查看结果
[atguigu@hadoop101 hadoop-2.7.2]$ cat wcoutput/part-r-00000
atguigu 2
hadoop 2
mapreduce 1
yarn 1
4.2 伪分布式运行模式
4.2.1 启动HDFS并运行MapReduce程序
1. 分析
(1)配置集群
(2)启动、测试集群增、删、查
(3)执行WordCount案例
2. 执行步骤
(1)配置集群
(a)配置:hadoop-env.sh
Linux系统中获取JDK的安装路径:
[atguigu@ hadoop101 ~]# echo $JAVA_HOME
/opt/module/jdk1.8.0_144
修改JAVA_HOME 路径:
export JAVA_HOME=/opt/module/jdk1.8.0_144
(b)配置:core-site.xml
<!-- 指定HDFS中NameNode的地址 --> <property> <name>fs.defaultFS</name> <value>hdfs://hadoop101:9000</value> </property>
<!-- 指定Hadoop运行时产生文件的存储目录 --> <property> <name>hadoop.tmp.dir</name> <value>/opt/module/hadoop-2.7.2/data/tmp</value> </property> |
(c)配置:hdfs-site.xml
<!-- 指定HDFS副本的数量 --> <property> <name>dfs.replication</name> <value>1</value> </property> |
(2)启动集群
(a)格式化NameNode(第一次启动时格式化,以后就不要总格式化)
[atguigu@hadoop101 hadoop-2.7.2]$ bin/hdfs namenode -format
(b)启动NameNode
[atguigu@hadoop101 hadoop-2.7.2]$ sbin/hadoop-daemon.sh start namenode
(c)启动DataNode
[atguigu@hadoop101 hadoop-2.7.2]$ sbin/hadoop-daemon.sh start datanode
(3)查看集群
(a)查看是否启动成功
[atguigu@hadoop101 hadoop-2.7.2]$ jps
13586 NameNode
13668 DataNode
13786 Jps
注意:jps是JDK中的命令,不是Linux命令。不安装JDK不能使用jps
(b)web端查看HDFS文件系统
http://hadoop101:50070/dfshealth.html#tab-overview
注意:如果不能查看,看如下帖子处理
http://www.cnblogs.com/zlslch/p/6604189.html
(c)查看产生的Log日志
说明:在企业中遇到Bug时,经常根据日志提示信息去分析问题、解决Bug。
当前目录:/opt/module/hadoop-2.7.2/logs
[atguigu@hadoop101 logs]$ ls
hadoop-atguigu-datanode-hadoop.atguigu.com.log
hadoop-atguigu-datanode-hadoop.atguigu.com.out
hadoop-atguigu-namenode-hadoop.atguigu.com.log
hadoop-atguigu-namenode-hadoop.atguigu.com.out
SecurityAuth-root.audit
[atguigu@hadoop101 logs]# cat hadoop-atguigu-datanode-hadoop101.log
(d)思考:为什么不能一直格式化NameNode,格式化NameNode,要注意什么?
[atguigu@hadoop101 hadoop-2.7.2]$ cd data/tmp/dfs/name/current/
[atguigu@hadoop101 current]$ cat VERSION
clusterID=CID-f0330a58-36fa-4a2a-a65f-2688269b5837
[atguigu@hadoop101 hadoop-2.7.2]$ cd data/tmp/dfs/data/current/
clusterID=CID-f0330a58-36fa-4a2a-a65f-2688269b5837
注意:格式化NameNode,会产生新的集群id,导致NameNode和DataNode的集群id不一致,集群找不到已往Hadoop快速入门