Hadoop2.7.5 HA集群搭建

Posted weidafei

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Hadoop2.7.5 HA集群搭建相关的知识,希望对你有一定的参考价值。

1、安装CentOS 7.3操作系统mini版本即可

2、设置关闭Selinux

*编辑  /etc/selinux/config

vi /etc/selinux/config

SELINUX=disabled

*重启机器,查看selinux状态

sestatus

# SELinux status:                 disabled

3、关闭Firewalld

systemctl stop firewalld

systemctl disable firewalld

firewall-cmd --state

4、关闭NetworkManager服务

#停止服务

service NetworkManager stop   

#禁用服务,下次不自动启动
chkconfig NetworkManager off 

 

*安装epel源

yum install –y epel-release

*查看repo情况

yum repolist

5、更新Hostname,设置hostname cluster201,让机器可以通过hostname进行互相访问,统一 /etc/hosts文件

 hostnamectl --static --transient  set-hostname Master1

vi /etc/hosts

127.0.0.1   localhost localhost.localdomain localhost4 localhost4.localdomain4

::1         localhost localhost.localdomain localhost6 localhost6.localdomain6

10.0.0.14 Master01

10.0.0.13 Master02

10.0.0.3 Master03

10.0.0.12 SparkNode01

10.0.0.7 SparkNode02

10.0.0.10 SparkNode03

6、安装JDK

mkdir -p /usr/local/java

cp /opt/jdk-linux-x64.tar.gz /usr/local/java/

cd /usr/local/java

tar -zxvf jdk-8u121-linux-x64.tar.gz

vi /etc/profile

添加:

JAVA_HOME=/usr/local/java/jdk1.8.0_121

CLASSPATH=$JAVA_HOME/lib/

PATH=$PATH:$JAVA_HOME/bin

export PATH JAVA_HOME CLASSPATH

 

source /etc/profile

java –version

7. 设置ssh免密登录

1、所有节点都删除.ssh 里所有文件重新做:

mkdir ~/.ssh/

cd ~/.ssh/

2、所有节点都生成公密匙

ssh-keygen -t rsa

chmod 700 ~/.ssh

chmod 600 ~/.ssh/id_rsa

3、所有节点都复制授权key文件

cat id_rsa.pub >> authorized_keys

利用vi编辑authorized_keys文件,相互复制获取彼此公匙

vi ~/.ssh/authorized_keys

chmod 700 ~/.ssh

chmod 600 ~/.ssh/authorized_keys

 

8. 安装Zookeeper

cd /opt

wget http://mirrors.tuna.tsinghua.edu.cn/apache/zookeeper/zookeeper-3.4.10/zookeeper-3.4.10.tar.gz

tar -zvxf zookeeper-3.4.10.tar.gz

mv zookeeper-3.4.10 zookeeper

vi /etc/profile

添加:

#zookeeper

export ZOOKEEPER_HOME=/opt/zookeeper

export PATH=$PATH:$ZOOKEEPER_HOME/bin

source /etc/profile

cd /opt/zookeeper

mkdir data

mkdir log

cd conf

cp zoo_sample.cfg zoo.cfg

vi zoo.cfg

修改

#配置数据存放目录

dataDir=/opt/zookeeper/data

#配置日志存放目录

dataLogDir=/opt/zookeeper/log

末尾添加

#配置集群地址

server.1= Master01:2888:3888

server.2= Master02:2888:3888

server.3= Master03:2888:3888

cd ..

Master01节点执行

echo 1 > data/myid

Master02节点执行

echo 2 > data/myid

Master03节点执行

echo 3 > data/myid

 

zkServer.sh start

zkServer.sh status

 

9.安装hadoop2.7集群

cd opt

wget http://124.202.164.15/files/311200000B258CDE/mirror.bit.edu.cn/apache/hadoop/common/hadoop-2.7.5/hadoop-2.7.5.tar.gz

tar xzvf hadoop-2.7.5.tar.gz

mv hadoop-2.7.5 hadoop

cd hadoop/etc/hadoop/

vi hadoop-env.sh

修改:

export JAVA_HOME=/usr/local/java/jdk1.8.0_121

export HADOOP_CONF_DIR=/opt/hadoop/etc/hadoop

vi core-site.xml

<configuration>

    <property>

        <name>fs.defaultFS</name>

        <value>hdfs://ns</value>

    </property>

    <property>

        <name>hadoop.tmp.dir</name>

        <value>/opt/hadoop/tmp</value>

    </property>

    <property>

        <name>ha.zookeeper.quorum</name>

        <value>Master01:2181,Master02:2181,Master03:2181</value>

    </property>

</configuration>

vi hdfs-site.xml

<configuration>

        <!--执行hdfs的nameservice为ns,和core-site.xml保持一致-->

        <property>

                <name>dfs.nameservices</name>

                <value>ns</value>

        </property>

        <!--ns下有两个namenode,分别是nn1,nn2-->

        <property>

                <name>dfs.ha.namenodes.ns</name>

                <value>nn1,nn2</value>

        </property>

        <!--nn1的RPC通信地址-->

        <property>

                <name>dfs.namenode.rpc-address.ns.nn1</name>

                <value>Master01:9000</value>

        </property>

        <!--nn1的http通信地址-->

        <property>

                <name>dfs.namenode.http-address.ns.nn1</name>

                <value>Master01:50070</value>

        </property>

        <!--nn2的RPC通信地址-->

        <property>

                <name>dfs.namenode.rpc-address.ns.nn2</name>

                <value>Master02:9000</value>

        </property>

        <!--nn2的http通信地址-->

        <property>

                <name>dfs.namenode.http-address.ns.nn2</name>

                <value>Master02:50070</value>

        </property>

        <!--指定namenode的元数据在JournalNode上的存放位置,这样,namenode2可以 从jn集群里获取最新的namenode的信息,达到热备的效果-->

        <property>

                <name>dfs.namenode.shared.edits.dir</name>

                <value>qjournal://SparkNode01:8485;SparkNode02:8485;SparkNode03:8485/ns</value>

        </property>

        <!--指定JournalNode存放数据的位置-->

        <property>

                <name>dfs.journalnode.edits.dir</name>

                <value>/opt/hadoop/journal</value>

        </property>

        <!--开启 namenode 故障时自动切换-->

        <property>

                <name>dfs.ha.automatic-failover.enabled</name>

                <value>true</value>

        </property>

        <!--配置切换的实现方式-->

        <property>

                <name>dfs.client.failover.proxy.provider.ns</name>

                <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>

        </property>

        <!--配置隔离机制-->

        <property>

                <name>dfs.ha.fencing.methods</name>

                <value>sshfence</value>

        </property>

        <!--配置隔离机制的ssh登录秘钥所在的位置-->

        <property>

                <name>dfs.ha.fencing.ssh.private-key-files</name>

                <value>/root/.ssh/id_rsa</value>

        </property>

        <!--配置namenode数据存放的位置,可以不配置,如果不配置,默认用的是core-site.xml里配置的hadoop.tmp.dir的路径-->

        <property>

                <name>dfs.namenode.name.dir</name>

                <value>file:///opt/hadoop/tmp/namenode</value>

        </property>

        <!--执行hdfs的nameservice为ns,和core-site.xml保持一致-->

        <property>

                <name>dfs.nameservices</name>

                <value>ns</value>

        </property>

        <!--ns下有两个namenode,分别是nn1,nn2-->

        <property>

                <name>dfs.ha.namenodes.ns</name>

                <value>nn1,nn2</value>

        </property>

        <!--nn1的RPC通信地址-->

        <property>

                <name>dfs.namenode.rpc-address.ns.nn1</name>

                <value>Master01:9000</value>

        </property>

        <!--nn1的http通信地址-->

        <property>

                <name>dfs.namenode.http-address.ns.nn1</name>

                <value>Master01:50070</value>

        </property>

        <!--nn2的RPC通信地址-->

        <property>

                <name>dfs.namenode.rpc-address.ns.nn2</name>

                <value>Master02:9000</value>

        </property>

        <!--nn2的http通信地址-->

        <property>

                <name>dfs.namenode.http-address.ns.nn2</name>

                <value>Master02:50070</value>

        </property>

        <!--指定namenode的元数据在JournalNode上的存放位置,这样,namenode2可以 从jn集群里获取最新的namenode的信息,达到热备的效果-->

        <property>

                <name>dfs.namenode.shared.edits.dir</name>

                <value>qjournal://SparkNode01:8485;SparkNode02:8485;SparkNode03:8485/ns</value>

        </property>

        <!--指定JournalNode存放数据的位置-->

        <property>

                <name>dfs.journalnode.edits.dir</name>

                <value>/opt/hadoop/journal</value>

        </property>

        <!--开启 namenode 故障时自动切换-->

        <property>

                <name>dfs.ha.automatic-failover.enabled</name>

                <value>true</value>

        </property>

        <!--配置切换的实现方式-->

        <property>

                <name>dfs.client.failover.proxy.provider.ns</name>

                <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>

        </property>

        <!--配置隔离机制-->

        <property>

                <name>dfs.ha.fencing.methods</name>

                <value>sshfence</value>

        </property>

        <!--配置隔离机制的ssh登录秘钥所在的位置-->

        <property>

                <name>dfs.ha.fencing.ssh.private-key-files</name>

                <value>/root/.ssh/id_rsa</value>

        </property>

        <!--配置namenode数据存放的位置,可以不配置,如果不配置,默认用的是core-site.xml里配置的hadoop.tmp.dir的路径-->

        <property>

                <name>dfs.namenode.name.dir</name>

                <value>file:///opt/hadoop/tmp/namenode</value>

        </property>

</configuration>

 

cp mapred-site.xml.template mapred-site.xml

vi mapred-site.xml

    <property>

        <name>mapreduce.framework.name</name>

        <value>yarn</value>

    </property>

vi yarn-site.xml

<configuration>

<!-- Site specific YARN configuration properties -->

<!--开启YARN HA -->

        <property>

                <name>yarn.resourcemanager.ha.enabled</name>

                <value>true</value>

        </property>

<!--指定两个 resourcemanager 的名称-->

        <property>

                <name>yarn.resourcemanager.ha.rm-ids</name>

                <value>rm1,rm2</value>

        </property>

<!--配置rm1,rm2的主机-->

        <property>

                <name>yarn.resourcemanager.hostname.rm1</name>

                <value>Master01</value>

        </property>

        <property>

                <name>yarn.resourcemanager.hostname.rm2</name>

                <value>Master03</value>

        </property>

<!--开启yarn恢复机制-->

        <property>

                <name>yarn.resourcemanager.recovery.enabled</name>

                <value>true</value>

        </property>

 

<!--配置zookeeper的地址-->

        <property>

                <name>yarn.resourcemanager.zk-address</name>

                <value>Master01:2181,Master02:2181,Master03:2181</value>

                <description>For multiple zk services, separate them with comma</description>

        </property>

<!--指定YARN HA的名称-->

        <property>

                <name>yarn.resourcemanager.cluster-id</name>

                <value>yarn-ha</value>

        </property>

<!--指定yarn的老大resoucemanager的地址-->

        <property>

                <name>yarn.resourcemanager.hostname</name>

                <value>Master01</value>

        </property>

        <property>

<!--NodeManager 获取数据的方式-->

                <name>yarn.nodemanager.aux-services</name>

                <value>mapreduce_shuffle</value>

        </property>

        <property>

                <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>

                <value>org.apache.hadoop.mapred.ShuffleHandler</value>

        </property>

        <property>

                <name>yarn.nodemanager.pmem-check-enabled</name>

                <value>false</value>

        </property>

        <property>

                <name>yarn.nodemanager.vmem-check-enabled</name>

                 <value>false</value>

        </property>

</configuration>

vi slaves

SparkNode01

SparkNode02

SparkNode03

 

配置 hadoop 的环境变量(可不配)

JAVA_HOME=/home/software/jdk1.8

HADOOP_HOME=/home/software/hadoop-2.7.4

CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar

PATH=$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$PATH

export JAVA_HOME PATH CLASSPATH HADOOP_HOME

 

根据配置文件,创建相关的文件夹,用来存放对应数据

mkdir -p /opt/hadoop/journal

mkdir -p /opt/hadoop/tmp

mkdir -p /opt/hadoop/tmp/namenode

mkdir -p /opt/hadoop/tmp/datanode

 

通过scp 命令,将hadoop安装目录远程copy到其他5台机器上

比如向Master02节点传输:

scp -r hadoop Master02:/opt/

 

启动zookeeper集群

在Zookeeper安装目录的bin目录下执行:

sh zkServer.sh start

利用sh zkServer.sh status检查状态

 

格式化zookeeper

在zk的leader节点上执行:

cd /opt/hadoop/bin

./hdfs zkfc -formatZK

,这个指令的作用是在zookeeper集群上生成ha节点 (ns节点)

 

进入hadoop安装目录的sbin目录,执行:

cd /opt/hadoop/sbin

./start-dfs.sh

cd /opt/hadoop/bin

hadoop namenode  -format

在 01 节点上执行:

hadoop-daemon.sh start namenode

 

 

把02节点的namenode节点变为standby namenode节点

在02节点上执行:

hdfs namenode -bootstrapStandby

 

启动 02 节点的 namenode 节点

在02节点上执行:

hadoop-daemon.sh start namenode

   

在01节点上启动主Resourcemanager

在01节点上执行:

start-yarn.sh

 

启动成功后,04,05,06节点上应该有nodemanager 的进程

在 03 节点上启动副 Resoucemanager

在03节点上执行:

yarn-daemon.sh start resourcemanager

 

测试

输入地址: http://ip:50070 ,查看 namenode 的信息,是active状态 的

 

然后停掉01节点的namenode,此时返现standby的namenode变为active。

 

28、 查看 yarn 的管理地址

 http://192.168.234.21:8088(节点01的8088端口)

 


以上是关于Hadoop2.7.5 HA集群搭建的主要内容,如果未能解决你的问题,请参考以下文章

Hadoop2.7.5+Hbase1.4.0完全分布式集群搭建

Flink集群搭建

Hadoop HA集群的搭建

基于HA的HBase集群搭建

spark的HA集群搭建

搭建HA高可用集群