Hadoop- Wordcount程序原理及代码实现
Posted RZ_Lee
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Hadoop- Wordcount程序原理及代码实现相关的知识,希望对你有一定的参考价值。
如果对Hadoop- MapReduce分布式计算框架原理还不熟悉的可以先了解一下它,因为本文的wordcount程序实现就是MapReduce分而治之最经典的一个范例。
单词计数(wordcount)主要步骤:
代码实现:
理解了原理,那么就从一个Job开始,从分Map任务和Reduce任务开始。用户编写的程序分为三个部分:Mapper,Reducer,Driver。
Mapper的输入数据和输出数据是KV对的形式(KV的类型可自定义),Mapper的业务逻辑是写在map()方法中,map()方法(maptask进程)对每一个<k,v>调用一次
Reducer的输入数据类型对应Mapper的输出数据类型,也是KV。Reducer的业务逻辑写在reduce()方法中,Reduce()方法对每一组相同的<k,v>组调用一次。
用户的Mapper和Reduce都要继承各自的父类。
整个程序需要一个Driver来进行提交,提交的是一个描述了各种必要信息的job对象。
1.设定Map任务:
package cn.Rz_Lee.hadoop.com.mr.wordcount;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
/**
* Created by Rz_Lee on 2017/8/14.
* KEYIN:默认情况下是mr框架所读到的一行文本的偏移量,Long
* 但是在hadoop中有自己的更精简的序列化接口,所以不直接用Long,而用LongWritable
*
* VALUE:默认情况下是mr框架所读到的一行文本内容,String,同上用Text
*
*KEYOUT:是用户自定义逻辑处理写成之后输出数据中的key,在此是单词,String,同上,用Text
*VALUEOUT:是用户自定义逻辑处理写成之后输出数据中的value,在此处是单词总次数,Integer,同上,用IntWritale
*
*/
public class WordCountMapper extends Mapper<LongWritable,Text,Text,IntWritable> {
/**
* map阶段的业务逻辑就写在自定义的map()方法中
* maptask会对每一行输入数据调用一次我们自定义的map()方法
* @param key
* @param value
* @param context 输出内容
* @throws IOException
* @throws InterruptedException
*/
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//将maptask传给我们的文本内容先转换成String
String line = value.toString();
//根据空格将一行切分成单词
String[] words = line.split(" ");
//将单词输出为<单词,1>
for(String word:words)
{
//将单词作为key,将次数1作为value,以便于后续的数据分发,可以根据单词分发经便于相同单词会到相同的reduce task
context.write(new Text(word),new IntWritable(1));
}
}
}
2.设定Reduce任务:
package cn.Rz_Lee.hadoop.mr.wordcount;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
/**KEYIN,VALUEIN 对应mapper输出的KEYOUT,VALUEOUT类型对应
*
* KYEOUT,VALUEOUT 是自定义reduce逻辑处理结果的输出数据类型
* KYEOUT是单词
* VALUE是总次数
* Created by Rz_Lee on 2017/8/14.
*/
public class WordCountReducer extends Reducer<Text,IntWritable,Text,IntWritable>{
/**
*
* @param key 是一组相同单词KV对的key,如<hi,1>,<hi,1>
* @param values
* @param context
* @throws IOException
* @throws InterruptedException
*/
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int count=0;
for (IntWritable value:values)
{
count+=value.get();
}
context.write(key,new IntWritable(count));
}
}
3.wordcount程序的操作类,提交运行mr程序的yarn客户端:
package cn.Rz_Lee.hadoop.com..mr.wordcount;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
/**相当于一个yarn集群的客户端
* 需要在此封装我们的mr程序相关运行参数,指定jar包
* 最后提交给yarn
* Created by Rz_Lee on 2017/8/14.
*/
public class WordCountDriver {
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
/*conf.set("mapreduce.framework.name","yarn");
conf.set("yarn.resourcemanager.hostname","srv01");*/
/*job.setJar("/usr/hadoop/wc.jar");*/
//指定本程序的jar包所在的本地路径
job.setJarByClass(WordCountDriver.class);
//指定本业务job使用的mapper/reducer业务类
job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReducer.class);
//指定mapper输出数据的KV类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
//指定最终输出的数据的KV类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
//指定job的输入原始文件所在目录
FileInputFormat.setInputPaths(job,new Path(args[0]));
//指定job的输出结果所在目录
FileOutputFormat.setOutputPath(job, new Path(args[1]));
//将job中配置的相关参数,以及job所用的java类所在的jar包,提交给yarn去运行
/*job.submit();*/
boolean res = job.waitForCompletion(true);
System.exit(res?0:1);
}
}
4.把wordcount项目导成jar包,上传到HDFS,运行 hadoop jar wordcount.jar 包.类名 /源文件路径 /输出数据文件夹
在yarn上面运行: yarn jar wordcount.jar 包.类名 /源文件路径 /输出数据文件夹
打开浏览器输入:yarn节点的IP:8088 ,在网页上可以看见整个Job的运行情况。
以上是关于Hadoop- Wordcount程序原理及代码实现的主要内容,如果未能解决你的问题,请参考以下文章
Hadoop基础(十八):MapReduce框架原理切片机制
Hadoop--07---MapReduce_02----WordCount 案例实操