Hadoop--07---MapReduce_02----WordCount 案例实操
Posted 高高for 循环
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Hadoop--07---MapReduce_02----WordCount 案例实操相关的知识,希望对你有一定的参考价值。
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
文章目录
WordCount 案例实操
1)需求
2)需求分析
按照MapReduce 编程规范,分别编写Mapper,Reducer,Driver。
3)环境准备
(1)创建maven 工程,MapReduceDemo
(2)在pom.xml 文件中添加如下依赖
<dependencies>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>3.1.3</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
<version>1.7.30</version>
</dependency>
</dependencies>
(3)在项目的src/main/resources 目录下,新建一个文件,命名为“log4j.properties”,在
文件中填入。
log4j.rootLogger=INFO, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/spring.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n
(4)创建包名:com.atguigu.mapreduce.wordcount
4)编写 Mapper类
package com.atguigu.mapreduce.wordcount;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
/**
* KEYIN, map阶段输入的key的类型:LongWritable
* VALUEIN,map阶段输入value类型:Text
* KEYOUT,map阶段输出的Key类型:Text
* VALUEOUT,map阶段输出的value类型:IntWritable
*/
public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable>
private Text outK = new Text();
private IntWritable outV = new IntWritable(1);
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException
// 1 获取一行
// atguigu atguigu
String line = value.toString();
// 2 切割
// atguigu
// atguigu
String[] words = line.split(" ");
// 3 循环写出
for (String word : words)
// 封装outk
outK.set(word);
// 写出
context.write(outK, outV);
5)编写 Reducer类
package com.atguigu.mapreduce.wordcount;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
/**
* KEYIN, reduce阶段输入的key的类型:Text
* VALUEIN,reduce阶段输入value类型:IntWritable
* KEYOUT,reduce阶段输出的Key类型:Text
* VALUEOUT,reduce阶段输出的value类型:IntWritable
*/
public class WordCountReducer extends Reducer<Text, IntWritable,Text,IntWritable>
private IntWritable outV = new IntWritable();
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException
int sum = 0;
// atguigu, (1,1)
// 累加
for (IntWritable value : values)
sum += value.get();
outV.set(sum);
// 写出
context.write(key,outV);
6)编写 Driver驱动类
package com.atguigu.mapreduce.wordcount;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class WordCountDriver
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException
// 1 获取job
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
// 2 设置jar包路径
job.setJarByClass(WordCountDriver.class);
// 3 关联mapper和reducer
job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReducer.class);
// 4 设置map输出的kv类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
// 5 设置最终输出的kV类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
// 6 设置输入路径和输出路径
FileInputFormat.setInputPaths(job, new Path("C:\\\\Users\\\\gaogao\\\\Desktop\\\\大数据\\\\input"));
FileOutputFormat.setOutputPath(job, new Path("C:\\\\Users\\\\gaogao\\\\Desktop\\\\大数据\\\\output"));
// 7 提交job
boolean result = job.waitForCompletion(true);
System.exit(result ? 0 : 1);
7)本地测试
8)提交到集群测试
(1)用 maven打 jar包,需要添加的打包插件
<build>
<plugins>
<plugin>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.6.1</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
注意 :如果工程上显示 红叉。 在项目上右键 ->maven->Reimport刷新 即可。
(2)将程序打成 jar包
(3,4,5)
以上是关于Hadoop--07---MapReduce_02----WordCount 案例实操的主要内容,如果未能解决你的问题,请参考以下文章
net.ucanaccess.triggers.TriggerException:表不存在。 :Z_2015_02_24