数据结构-Hash

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了数据结构-Hash相关的知识,希望对你有一定的参考价值。

参考技术A

先看一下hash表的结构图:

哈希表(Hash table,也叫散列表),是根据键(Key)而直接访问在内存存储位置的数据结构。也就是说,它通过计算一个关于键值的函数,将所需查询的数据映射到表中一个位置来访问记录,这加快了查找速度。这个映射函数叫做散列函数,存放记录的数组叫做散列表
白话一点的说就是通过把Key通过一个固定的算法函数(hash函数)转换成一个整型数字,然后就对该数字对数组的长度进行取余,取余结果就当作数组的下标,将value存储在以该数字为下标的数组空间里。

先了解一下下面几个常说的几个关键字是什么:
key :我们输入待查找的值
value :我们想要获取的内容
hash值 :key通过hash函数算出的值(对数组长度取模,便可得到数组下标)
hash函数(散列函数) :存在一种函数F,根据这个函数和查找关键字key,可以直接确定查找值所在位置,而不需要一个个遍历比较。这样就预先知道key在的位置,直接找到数据,提升效率。

地址index=F(key)
hash函数就是根据key计算出该存储地址的位置,hash表就是基于hash函数建立的一种查找表。

方法有很多种,比如直接定址法、数字分析法、平方取中法、折叠法、随机数法、除留余数法等,网上相关介绍有很多,这里就不重点说这个了

对不同的关键字可能得到同一散列地址, 即k1≠k2,而f(k1)=f(k2),或f(k1) MOD 容量 =f(k2) MOD 容量 ,这种现象称为 碰撞 ,亦称 冲突
通过构造性能良好的hash函数,可以减少冲突,但一般不可能完全避免冲突,因此解决冲突是hash表的另一个关键问题。
创建和查找hash表都会遇到冲突,两种情况下解决冲突的方法应该一致。

这里要提到两个参数: 初始容量 加载因子 ,这两个参数是影响hash表性能的重要参数。
容量 : 表示hash表中数组的长度,初始容量是创建hash表时的容量。
加载因子 : 是hash表在其容量自动增加之前可以达到多满的一种尺度(存储元素的个数),它衡量的是一个散列表的空间的使用程度。
loadFactor = 加载因子 / 容量
一般情况下,当loadFactor <= 1时,hash表查找的期望复杂度为O(1).
对使用链表法的散列表来说, 负载因子越大,对空间的利用更充分,然后后果是查找效率的降低;如果负载因子太小,那么散列表的数据将过于稀疏,对空间造成严重浪费 。系统默认负载因子为0.75。

当hash表中元素越来越多的时候,碰撞的几率也就越来越高(因为数组的长度是固定的),所以为了提高查询的效率,就要对数组进行扩容。而在数组扩容之后,最消耗性能的点就出现了,原数组中的数据必须重新计算其在新数组中的位置,并放进去,这就是 扩容
什么时候进行扩容呢?当表中 元素个数超过了容量 * loadFactor 时,就会进行数组扩容。

Foundation框架下提供了很多高级数据结构,很多都是和Core Foundation下的相对应,例如NSSet就是和_CFSet相对应,NSDictionary就是和_CFDictionary相对应。 源码

这里说的hash并不是之前说的hash表,而是一个方法。为什么要有hash方法?
这个问题需要从hash表数据结构说起,首先看下如何在数组中查找某个成员

在数组未排序的情况下,查找的时间复杂度是O(n)(n为数组长度)。hash表的出现,提高了查找速度,当成员被加入到hash表中时,会计算出一个hash值,hash值对数组长度取模,会得到该成员在数组中的位置。
通过这个位置可以将查找的时间复杂度优化到O(1),前提是在不发生冲突的情况下。
这里的hash值是通过hash方法计算出来的,且hash方法返回的hash值最好唯一
和数组相比,基于hash值索引的hash表查找某个成员的过程:

可以看出优势比较明显,最坏的情况和数组也相差无几。

重写person的hash方法和copyWithZone方法,方便查看hash方法是否被调用:

打印结果:

可以了解到: hash方法只在对象被添加到NSSet和设置为NSDictionary的key时被调用
NSSet添加新成员时,需要根据hash值来快速查找成员,以保证集合中是否已经存在该成员。
NSDictionary在查找key时,也是利用了key的hash值来提高查找的效率。
这里可以得到这个结论:
相等变量的hash结果总是相同的,不相等变量的hash结果有可能相同

根据数据结构可以发现set内部使用了指针数组来保存keys,可以从 源码 中了解到采用的是连续存储的方式存储。

NSSet添加key,key值会根据特定的hash函数算出hash值,然后存储数据的时候,会根据hash函数算出来的值,找到对应的下标,如果该下标下已有数据,开放定址法后移动插入,如果数组到达阈值,这个时候就会进行扩容,然后重新hash插入。查询速度就可以和连续性存储的数据一样接近O(1)了。

和上面的集合NSSet相比较,多了一个指针数组values。

通过比较集合NSSet和字典NSDictionary的 源码 可以知道两者实现的原理差不多,而字典则用了两个数组keys和values,说明这两个数据是被分开存储的。

通过源码可以看到,当有重复的key插入到字典NSDictionary时,会覆盖旧值,而集合NSSet则什么都不做,保证了里面的元素不会重复。
大家都知道,字典里的键值对key-value是一一对应的关系,从数据结构可以看出,key和value是分别存储在两个不同的数组里,这里面是如何对key、value进行绑定的呢?
首先 key利用hash函数算出hash值,然后对数组的长度取模,得到数组下标的位置,同样将这个地址对应到values数组的下标,就匹配到相应的value。 注意到上面的这句话,要保证一点, 就是keys和values这两个数组的长度要一致 。所以扩容的时候,需要对keys和values两个数组一起扩容。

对于字典NSDictionary设置的key和value,key值会根据特定的hash函数算出hash值,keys和values同样多,利用hash值对数组长度取模,得到其对应的下标index,如果下标已有数据,开放定址法后移插入,如果数组达到阈值,就扩容,然后重新hash插入。这样的机制就把一些不连续的key-value值插入到能建立起关系的hash表中。
查找的时候,key根据hash函数以及数组长度,得到下标,然后根据下标直接访问hash表的keys和values,这样查询速度就可以和连续线性存储的数据一样接近O(1)了。

参考文章: 笔记-数据结构之 Hash(OC的粗略实现)

以上是关于数据结构-Hash的主要内容,如果未能解决你的问题,请参考以下文章

Redis hash

K:hash的应用场景

数据分布算法:hash+ 一致性 hash + redis cluster 的 hash slot

[数据结构]Hash查找算法设计

[数据结构]Hash查找算法设计

数据结构与算法-hash表