Redis源码剖析和注释(十八)--- Redis AOF持久化机制

Posted men_wen

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Redis源码剖析和注释(十八)--- Redis AOF持久化机制相关的知识,希望对你有一定的参考价值。

Redis AOF持久化机制

1. AOF持久化介绍

Redis中支持RDBAOF这两种持久化机制,目的都是避免因进程退出,造成的数据丢失问题。

  • RDB持久化:把当前进程数据生成时间点快照(point-in-time snapshot)保存到硬盘的过程,避免数据意外丢失。
  • AOF持久化:以独立日志的方式记录每次写命令,重启时在重新执行AOF文件中的命令达到恢复数据的目的。

Redis RDB持久化机制源码剖析和注释

AOF的使用:在redis.conf配置文件中,将appendonly设置为yes,默认的为no

2. AOF持久化的实现

AOF持久化所有注释:Redis AOF持久化机制源码注释

2.1 命令写入磁盘

2.1.1 命令写入缓冲区

  • 命令问什么先写入缓冲区

由于Redis是单线程响应命令,所以每次写AOF文件都直接追加到硬盘中,那么写入的性能完全取决于硬盘的负载,所以Redis会将命令写入到缓冲区中,然后执行文件同步操作,再将缓冲区内容同步到磁盘中,这样就很好的保持了高性能。

那么缓冲区定义如下,它是一个简单动态字符串(sds),因此很好的和C语言的字符串想兼容。

struct redisServer {
    // AOF缓冲区,在进入事件loop之前写入
    sds aof_buf;      /* AOF buffer, written before entering the event loop */
};
  • 命令的写入格式

Redis命令写入的内容直接就是文本协议格式,例如:

*2\\r\\n$6\\r\\nSELECT\\r\\n$1\\r\\n0\\r\\n*5\\r\\n$4\\r\\nSADD\\r\\n$3\\r\\nkey\\r\\n$2\\r\\nm3\\r\\n$2\\r\\nm2\\r\\n$2\\r\\nm1\\r\\n

根据协议内容,大致可以得出:这是第0号数据库,执行了一个SADD key m1 m2 m3命令。这就是Redis采用文件协议格式的原因之一,文本协议具有很高的可读性,可以直接进行修改。而且,文本协议还具有很好的兼容性,而且协议采用了\\r\\n换行符,所以每次写入命令只需执行追加操作。

既然是追加操作,因此,源码中的函数名字也是如此,catAppendOnlyGenericCommand()函数实现了追加命令到缓冲区中,从这个函数中,可以清楚的看到协议是如何生成的。

// 根据传入的命令和命令参数,将他们还原成协议格式
sds catAppendOnlyGenericCommand(sds dst, int argc, robj **argv) {
    char buf[32];
    int len, j;
    robj *o;

    // 格式:"*<argc>\\r\\n"
    buf[0] = '*';
    len = 1+ll2string(buf+1,sizeof(buf)-1,argc);
    buf[len++] = '\\r';
    buf[len++] = '\\n';
    // 拼接到dst的后面
    dst = sdscatlen(dst,buf,len);

    // 遍历所有的参数,建立命令的格式:$<command_len>\\r\\n<command>\\r\\n
    for (j = 0; j < argc; j++) {
        o = getDecodedObject(argv[j]);  //解码成字符串对象
        buf[0] = '$';
        len = 1+ll2string(buf+1,sizeof(buf)-1,sdslen(o->ptr));
        buf[len++] = '\\r';
        buf[len++] = '\\n';
        dst = sdscatlen(dst,buf,len);
        dst = sdscatlen(dst,o->ptr,sdslen(o->ptr));
        dst = sdscatlen(dst,"\\r\\n",2);
        decrRefCount(o);
    }
    return dst; //返回还原后的协议内容
}

这个函数只是追加一个普通的键,然而一个过期命令的键,需要全部转换为PEXPIREAT,因为必须将相对时间设置为绝对时间,否则还原数据库时,就无法得知该键是否过期,Redis的catAppendOnlyExpireAtCommand()函数实现了这个功能。

// 用sds表示一个 PEXPIREAT 命令,seconds为生存时间,cmd为指定转换的指令
// 这个函数用来转换 EXPIRE and PEXPIRE 命令成 PEXPIREAT ,以便在AOF时,时间总是一个绝对值
sds catAppendOnlyExpireAtCommand(sds buf, struct redisCommand *cmd, robj *key, robj *seconds) {
    long long when;
    robj *argv[3];

    /* Make sure we can use strtoll */
    // 解码成字符串对象,以便使用strtoll函数
    seconds = getDecodedObject(seconds);
    // 取出过期值,long long类型
    when = strtoll(seconds->ptr,NULL,10);
    /* Convert argument into milliseconds for EXPIRE, SETEX, EXPIREAT */
    // 将 EXPIRE, SETEX, EXPIREAT 参数的秒转换成毫秒
    if (cmd->proc == expireCommand || cmd->proc == setexCommand ||
        cmd->proc == expireatCommand)
    {
        when *= 1000;
    }
    /* Convert into absolute time for EXPIRE, PEXPIRE, SETEX, PSETEX */
    // 将 EXPIRE, PEXPIRE, SETEX, PSETEX 命令的参数,从相对时间设置为绝对时间
    if (cmd->proc == expireCommand || cmd->proc == pexpireCommand ||
        cmd->proc == setexCommand || cmd->proc == psetexCommand)
    {
        when += mstime();
    }
    decrRefCount(seconds);

    // 创建一个 PEXPIREAT 命令对象
    argv[0] = createStringObject("PEXPIREAT",9);
    argv[1] = key;
    argv[2] = createStringObjectFromLongLong(when);
    // 将命令还原成协议格式,追加到buf
    buf = catAppendOnlyGenericCommand(buf, 3, argv);
    decrRefCount(argv[0]);
    decrRefCount(argv[2]);
    // 返回buf
    return buf;
}

那么,这两个函数都是实现的底层功能,因此他们都被feedAppendOnlyFile()函数最终调用。

这个函数,创建一个空的简单动态字符串(sds),将当前所有追加命令操作都追加到这个sds中,最终将这个sds追加到server.aof_buf。。还有就是,这个函数在写入键之前,需要显式的写入一个SELECT命令,以正确的将所有键还原到正确的数据库中。

// 将命令追加到AOF文件中
void feedAppendOnlyFile(struct redisCommand *cmd, int dictid, robj **argv, int argc) {
    sds buf = sdsempty();   //设置一个空sds
    robj *tmpargv[3];

    // 使用SELECT命令,显式的设置当前数据库
    if (dictid != server.aof_selected_db) {
        char seldb[64];

        snprintf(seldb,sizeof(seldb),"%d",dictid);
        // 构造SELECT命令的协议格式
        buf = sdscatprintf(buf,"*2\\r\\n$6\\r\\nSELECT\\r\\n$%lu\\r\\n%s\\r\\n",
            (unsigned long)strlen(seldb),seldb);
        // 执行AOF时,当前的数据库ID
        server.aof_selected_db = dictid;
    }

    // 如果是 EXPIRE/PEXPIRE/EXPIREAT 三个命令,则要转换成 PEXPIREAT 命令
    if (cmd->proc == expireCommand || cmd->proc == pexpireCommand ||
        cmd->proc == expireatCommand) {
        /* Translate EXPIRE/PEXPIRE/EXPIREAT into PEXPIREAT */
        buf = catAppendOnlyExpireAtCommand(buf,cmd,argv[1],argv[2]);

    // 如果是 SETEX/PSETEX 命令,则转换成 SET and PEXPIREAT
    } else if (cmd->proc == setexCommand || cmd->proc == psetexCommand) {
        /* Translate SETEX/PSETEX to SET and PEXPIREAT */
        // SETEX key seconds value
        // 构建SET命令对象
        tmpargv[0] = createStringObject("SET",3);
        tmpargv[1] = argv[1];
        tmpargv[2] = argv[3];
        // 将SET命令按协议格式追加到buf中
        buf = catAppendOnlyGenericCommand(buf,3,tmpargv);
        decrRefCount(tmpargv[0]);
        // 将SETEX/PSETEX命令和键对象按协议格式追加到buf中
        buf = catAppendOnlyExpireAtCommand(buf,cmd,argv[1],argv[2]);

    // 其他命令直接按协议格式转换,然后追加到buf中
    } else {
        buf = catAppendOnlyGenericCommand(buf,argc,argv);
    }

    // 如果正在进行AOF,则将命令追加到AOF的缓存中,在重新进入事件循环之前,这些命令会被冲洗到磁盘上,并向client回复
    if (server.aof_state == AOF_ON)
        server.aof_buf = sdscatlen(server.aof_buf,buf,sdslen(buf));

    // 如果后台正在进行重写,那么将命令追加到重写缓存区中,以便我们记录重写的AOF文件于当前数据库的差异
    if (server.aof_child_pid != -1)
        aofRewriteBufferAppend((unsigned char*)buf,sdslen(buf));

    sdsfree(buf);
}

2.1.2 缓冲区同步到文件

既然缓冲区提供了高性能的保障,那么缓冲区中的数据安全问题如何解决呢?只要数据存在于缓冲区,那么就有丢失的危险。那么,如果控制同步的频率呢?Redis中给出了3中缓冲区同步文件的策略。

可配置值说明
AOF_FSYNC_ALWAYS命令写入aof_buf后调用系统fsync和操作同步到AOF文件,fsync完成后进程程返回
AOF_FSYNC_EVERYSEC命令写入aof_buf后调用系统write操作,write完成后线程返回。fsync同步文件操作由进程每秒调用一次
AOF_FSYNC_NO命令写入aof_buf后调用系统write操作,不对AOF文件做fsync同步,同步硬盘由操作由操作系统负责

我们来了解一下,write和fsync操作,在系统中都做了哪些事:

  • write操作:会触发延迟写(delayed write)机制。Linux在内核提供页缓冲区用来提高IO性能,因此,write操作在将数据写入操作系统的缓冲区后就直接返回,而不一定触发同步到磁盘的操作。只有在页空间写满,或者达到特定的时间周期,才会同步到磁盘。因此单纯的write操作也是有数据丢失的风险。
  • fsync操作:针对单个文件操作,做强制硬盘同步,fsync将阻塞直到写入硬盘完成后返回。

虽然Redis提供了三种同步策略,兼顾安全和性能的同步策略是:AOF_FSYNC_EVERYSEC。但是仍有丢失数据的风险,而且不是一秒而是两秒的数据,接下来就看同步的源码实现:

// 将AOF缓存写到磁盘中
// 因为我们需要在回复client之前对AOF执行写操作,唯一的机会是在事件loop中,因此累计所有的AOF到缓存中,在下一次重新进入事件loop之前将缓存写到AOF文件中

// 关于force参数
// 当fsync被设置为每秒执行一次,如果后台仍有线程正在执行fsync操作,我们可能会延迟flush操作,因为write操作可能会被阻塞,当发生这种情况时,说明需要尽快的执行flush操作,会调用 serverCron() 函数。
// 然而如果force被设置为1,我们会无视后台的fsync,直接进行写入操作

#define AOF_WRITE_LOG_ERROR_RATE 30 /* Seconds between errors logging. */
// 将AOF缓存冲洗到磁盘中
void flushAppendOnlyFile(int force) {
    ssize_t nwritten;
    int sync_in_progress = 0;
    mstime_t latency;

    // 如果缓冲区中没有数据,直接返回
    if (sdslen(server.aof_buf) == 0) return;

    // 同步策略是每秒同步一次
    if (server.aof_fsync == AOF_FSYNC_EVERYSEC)
        // AOF同步操作是否在后台正在运行
        sync_in_progress = bioPendingJobsOfType(BIO_AOF_FSYNC) != 0;

    // 同步策略是每秒同步一次,且不是强制同步的
    if (server.aof_fsync == AOF_FSYNC_EVERYSEC && !force) {
        /* With this append fsync policy we do background fsyncing.
         * If the fsync is still in progress we can try to delay
         * the write for a couple of seconds. */
        // 根据这个同步策略,且没有设置强制执行,我们在后台执行同步
        // 如果同步已经在后台执行,那么可以延迟两秒,如果设置了force,那么服务器会阻塞在write操作上

        // 如果后台正在执行同步
        if (sync_in_progress) {
            // 延迟执行flush操作的开始时间为0,表示之前没有延迟过write
            if (server.aof_flush_postponed_start == 0) {
                /* No previous write postponing, remember that we are
                 * postponing the flush and return. */
                // 之前没有延迟过write操作,那么将延迟write操作的开始时间保存下来,然后就直接返回
                server.aof_flush_postponed_start = server.unixtime;
                return;
            // 如果之前延迟过write操作,如果没到2秒,直接返回,不执行write
            } else if (server.unixtime - server.aof_flush_postponed_start < 2) {
                /* We were already waiting for fsync to finish, but for less
                 * than two seconds this is still ok. Postpone again. */
                return;
            }
            /* Otherwise fall trough, and go write since we can't wait
             * over two seconds. */
            // 执行到这里,表示后台正在执行fsync,但是延迟时间已经超过2秒
            // 那么执行write操作,此时write会被阻塞
            server.aof_delayed_fsync++;
            serverLog(LL_NOTICE,"Asynchronous AOF fsync is taking too long (disk is busy?). Writing the AOF buffer without waiting for fsync to complete, this may slow down Redis.");
        }
    }
    /* We want to perform a single write. This should be guaranteed atomic
     * at least if the filesystem we are writing is a real physical one.
     * While this will save us against the server being killed I don't think
     * there is much to do about the whole server stopping for power problems
     * or alike */
    // 执行write操作,保证写操作是原子操作

    // 设置延迟检测开始的时间
    latencyStartMonitor(latency);
    // 将缓冲区的内容写到AOF文件中
    nwritten = write(server.aof_fd,server.aof_buf,sdslen(server.aof_buf));
    // 设置延迟的时间 = 当前的时间 - 开始的时间
    latencyEndMonitor(latency);
    /* We want to capture different events for delayed writes:
     * when the delay happens with a pending fsync, or with a saving child
     * active, and when the above two conditions are missing.
     * We also use an additional event name to save all samples which is
     * useful for graphing / monitoring purposes. */
    // 捕获不同造成延迟write的事件
    // 如果正在后台执行同步fsync
    if (sync_in_progress) {
        // 将latency和"aof-write-pending-fsync"关联到延迟诊断字典中
        latencyAddSampleIfNeeded("aof-write-pending-fsync",latency);
    // 如果正在执行AOF或正在执行RDB
    } else if (server.aof_child_pid != -1 || server.rdb_child_pid != -1) {
        // 将latency和"aof-write-active-child"关联到延迟诊断字典中
        latencyAddSampleIfNeeded("aof-write-active-child",latency);
    } else {
        // 将latency和"aof-write-alone"关联到延迟诊断字典中
        latencyAddSampleIfNeeded("aof-write-alone",latency);
    }
    // 将latency和"aof-write"关联到延迟诊断字典中
    latencyAddSampleIfNeeded("aof-write",latency);

    /* We performed the write so reset the postponed flush sentinel to zero. */
    // 执行了write,所以清零延迟flush的时间
    server.aof_flush_postponed_start = 0;

    // 如果写入的字节数不等于缓存的字节数,发生异常错误
    if (nwritten != (signed)sdslen(server.aof_buf)) {
        static time_t last_write_error_log = 0;
        int can_log = 0;

        /* Limit logging rate to 1 line per AOF_WRITE_LOG_ERROR_RATE seconds. */
        // 限制日志的频率每行30秒
        if ((server.unixtime - last_write_error_log) > AOF_WRITE_LOG_ERROR_RATE) {
            can_log = 1;
            last_write_error_log = server.unixtime;
        }

        /* Log the AOF write error and record the error code. */
        // 如果写入错误,写errno到日志
        if (nwritten == -1) {
            if (can_log) {
                serverLog(LL_WARNING,"Error writing to the AOF file: %s",
                    strerror(errno));
                server.aof_last_write_errno = errno;
            }
        // 如果是写了一部分,发生错误
        } else {
            if (can_log) {
                serverLog(LL_WARNING,"Short write while writing to "
                                       "the AOF file: (nwritten=%lld, "
                                       "expected=%lld)",
                                       (long long)nwritten,
                                       (long long)sdslen(server.aof_buf));
            }

            // 将追加的内容截断,删除了追加的内容,恢复成原来的文件
            if (ftruncate(server.aof_fd, server.aof_current_size) == -1) {
                if (can_log) {
                    serverLog(LL_WARNING, "Could not remove short write "
                             "from the append-only file.  Redis may refuse "
                             "to load the AOF the next time it starts.  "
                             "ftruncate: %s", strerror(errno));
                }
            } else {
                /* If the ftruncate() succeeded we can set nwritten to
                 * -1 since there is no longer partial data into the AOF. */
                nwritten = -1;
            }
            server.aof_last_write_errno = ENOSPC;
        }

        /* Handle the AOF write error. */
        // 如果是写入的策略为每次写入就同步,无法恢复这种策略的写,因为我们已经告知使用者,已经将写的数据同步到磁盘了,因此直接退出程序
        if (server.aof_fsync == AOF_FSYNC_ALWAYS) {
            /* We can't recover when the fsync policy is ALWAYS since the
             * reply for the client is already in the output buffers, and we
             * have the contract with the user that on acknowledged write data
             * is synced on disk. */
            serverLog(LL_WARNING,"Can't recover from AOF write error when the AOF fsync policy is 'always'. Exiting...");
            exit(1);
        } else {
            /* Recover from failed write leaving data into the buffer. However
             * set an error to stop accepting writes as long as the error
             * condition is not cleared. */
            //设置执行write操作的状态
            server.aof_last_write_status = C_ERR;

            /* Trim the sds buffer if there was a partial write, and there
             * was no way to undo it with ftruncate(2). */
            // 如果只写入了局部,没有办法用ftruncate()函数去恢复原来的AOF文件
            if (nwritten > 0) {
                // 只能更新当前的AOF文件的大小
                server.aof_current_size += nwritten;
                // 删除AOF缓冲区写入的字节数
                sdsrange(server.aof_buf,nwritten,-1);
            }
            return; /* We'll try again on the next call... */
        }

    // nwritten == (signed)sdslen(server.aof_buf
    // 执行write写入成功
    } else {
        /* Successful write(2). If AOF was in error state, restore the
         * OK state and log the event. */
        // 更新最近一次写的状态为 C_OK
        if (server.aof_last_write_status == C_ERR) {
            serverLog(LL_WARNING,
                "AOF write error looks solved, Redis can write again.");
            server.aof_last_write_status = C_OK;
        }
    }
    // 只能更新当前的AOF文件的大小
    server.aof_current_size += nwritten;

    /* Re-use AOF buffer when it is small enough. The maximum comes from the
     * arena size of 4k minus some overhead (but is otherwise arbitrary). */
    // 如果这个缓存足够小,小于4K,那么重用这个缓存,否则释放AOF缓存
    if ((sdslen(server.aof_buf)+sdsavail(server.aof_buf)) < 4000) {
        sdsclear(server.aof_buf);   //将缓存内容清空,重用
    } else {
        sdsfree(server.aof_buf);    //释放缓存空间
        server.aof_buf = sdsempty();//创建一个新缓存
    }

    /* Don't fsync if no-appendfsync-on-rewrite is set to yes and there are
     * children doing I/O in the background. */
    // 如果no-appendfsync-on-rewrite被设置为yes,表示正在执行重写,则不执行fsync
    // 或者正在执行 BGSAVE 或 BGWRITEAOF,也不执行
    if (server.aof_no_fsync_on_rewrite &&
        (server.aof_child_pid != -1 || server.rdb_child_pid != -1))
            return;

    /* Perform the fsync if needed. */

    // 执行fsync进行同步,每次写入都同步
    if (server.aof_fsync == AOF_FSYNC_ALWAYS) {
        /* aof_fsync is defined as fdatasync() for Linux in order to avoid
         * flushing metadata. */
        // 设置延迟检测开始的时间
        latencyStartMonitor(latency);
        // Linux下调用fdatasync()函数更高效的执行同步
        aof_fsync(server.aof_fd); /* Let's try to get this data on the disk */
        // 设置延迟的时间 = 当前的时间 - 开始的时间
        latencyEndMonitor(latency);
        // 将latency和"aof-fsync-always"关联到延迟诊断字典中
        latencyAddSampleIfNeeded("aof-fsync-always",latency);
        // 更新最近一次执行同步的时间
        server.aof_last_fsync = server.unixtime;

    // 每秒执行一次同步,当前时间大于上一次执行同步的时间
    } else if ((server.aof_fsync == AOF_FSYNC_EVERYSEC &&
                server.unixtime > server.aof_last_fsync)) {
        // 如果没有正在执行同步,那么在后台开一个线程执行同步
        if (!sync_in_progress) aof_background_fsync(server.aof_fd);
        // 更新最近一次执行同步的时间
        server.aof_last_fsync = server.unixtime;
    }
}

2.2 重写机制

当一个数据库的命令非常多时,AOF文件就会非常大,为了解决这个问题,Redis引入了AOF重写机制来压缩文件的体积。

Redis AOF持久化机制源码注释

2.2.1 AOF重写的方式

  • 进程内已经超时的数据不在写入文件。
  • 无效命令不在写入文件。
  • 多条写的命令合并成一个。

总之,AOF总是记录数据库的最终状态的一个命令集。类似于物理中的位移与路程的关系,位移总是关心的是启动到终点距离,而不关心是如何从起点到达终点。

2.2.2 触发机制

  • 手动触发:BGREWRITEAOF 命令。
  • 自动触发:根据redis.conf的两个参数确定触发的时机。
    • auto-aof-rewrite-percentage 100:当前AOF的文件空间(aof_current_size)和上一次重写后AOF文件空间(aof_base_size)的比值。
    • auto-aof-rewrite-min-size 64mb:表示运行AOF重写时文件最小的体积。
    • 自动触发时机 = (aof_current_size > auto-aof-rewrite-min-size && (aof_current_size - aof_base_size) / aof_base_size >= auto-aof-rewrite-percentage)

2.2.3 AOF重写的实现

AOF重写操作有可能会长时间阻塞服务器主进程,因此会fork()一个子进程在后台进行重写,然后父进程就可以继续响应命令请求。虽然解决了阻塞问题,但是有产生了新问题:子进程在重写期间,服务其还会处理新的命令请求,而这些命令可能灰度数据库的状态进行更改,从而使当前的数据库状态和AOF重写之后保存的状态不一致。

因此Redis设置了一个AOF重写缓冲区的结构。

// AOF缓冲区大小
#define AOF_RW_BUF_BLOCK_SIZE (1024*1024*10)    /* 10 MB per block */

// AOF块缓冲区结构
typedef struct aofrwblock {
    // 当前已经使用的和可用的字节数
    unsigned long used, free;
    // 缓冲区
    char buf[AOF_RW_BUF_BLOCK_SIZE];
} aofrwblock;

重写缓冲区并不是一个大块的内存空间,而是一些内存块的链表,没个内存块的大小为10MB,这样就组成了一个重写缓冲区。

因此当客户端发来命令时,会执行以下操作:

  1. 执行客户端的命令。
  2. 将执行后的写命令追加到AOF缓冲区(server.aof_buf)中。
  3. 将执行后的写命令追加到AOF重写缓冲区(server.aof_rewrite_buf_blocks)中。

这样以来就不会丢失子进程重写期间,父进程新处理的写命令了。

于是,我们查看一下后台执行重写操作的源码。

// 以下是BGREWRITEAOF的工作步骤
// 1. 用户调用BGREWRITEAOF
// 2. Redis调用这个函数,它执行fork()
//      2.1 子进程在临时文件中执行重写操作
//      2.2 父进程将累计的差异数据追加到server.aof_rewrite_buf中
// 3. 当子进程完成2.1
// 4. 父进程会捕捉到子进程的退出码,如果是OK,那么追加累计的差异数据到临时文件,并且对临时文件rename,用它代替旧的AOF文件,然后就完成AOF的重写。
int rewriteAppendOnlyFileBackground(void) {
    pid_t childpid;
    long long start;

    // 如果正在进行重写或正在进行RDB持久化操作,则返回C_ERR
    if (server.aof_child_pid != -1 || server.rdb_child_pid != -1) return C_ERR;
    // 创建父子进程间通信的管道
    if (aofCreatePipes() != C_OK) return C_ERR;
    // 记录fork()开始时间
    start = ustime();

    // 子进程
    if ((childpid = fork()) == 0) {
        char tmpfile[256];

        /* Child */
        // 关闭监听的套接字
        closeListeningSockets(0);
        // 设置进程名字
        redisSetProcTitle("redis-aof-rewrite");
        // 创建临时文件
        snprintf(tmpfile,256,"temp-rewriteaof-bg-%d.aof", (int) getpid());
        // 对临时文件进行AOF重写
        if (rewriteAppendOnlyFile(tmpfile) == C_OK) {
            // 获取子进程使用的内存空间大小
            size_t private_dirty = zmalloc_get_private_dirty();

            if (private_dirty) {
                serverLog(LL_NOTICE,
                    "AOF rewrite: %zu MB of memory used by copy-on-write",
                    private_dirty/(1024*1024));
            }
            // 成功退出子进程
            exitFromChild(0);
        } else {
            // 异常退出子进程
            exitFromChild(1);
        }

    // 父进程
    } else {
        /* Parent */
        // 设置fork()函数消耗的时间
        server.stat_fork_time = ustime()-start;
        // 计算fork的速率,GB/每秒
        server.stat_fork_rate = (double) zmalloc_used_memory() * 1000000 / server.stat_fork_time / (1024*1024*1024); /* GB per second. */
        // 将"fork"和fork消耗的时间关联到延迟诊断字典中
        latencyAddSampleIfNeeded("fork",server.stat_fork_time/1000);
        if (childpid == -1) {
            serverLog(LL_WARNING,
                "Can't rewrite append only file in background: fork: %s",
                strerror(errno));
            return C_ERR;
        }
        // 打印日志
        serverLog(LL_NOTICE,
            "Background append only file rewriting started by pid %d",childpid);
        // 将AOF日程标志清零
        server.aof_rewrite_scheduled = 0;
        // AOF开始的时间
        server.aof_rewrite_time_start = time(NULL);
        // 设置AOF重写的子进程pid
        server.aof_child_pid = childpid;
        // 在AOF或RDB期间,不能对哈希表进行resize操作
        updateDictResizePolicy();
        // 将aof_selected_db设置为-1,强制让feedAppendOnlyFile函数执行时,执行一个select命令
        server.aof_selected_db = -1;
        // 清空脚本缓存
        replicationScriptCacheFlush();
        return C_OK;
    }
    return C_OK; /* unreached */
}

服务器主进程执行了fork操作生成一个子进程执行rewriteAppendOnlyFile()函数进行对临时文件的重写操作。

rewriteAppendOnlyFile()函数源码如下:

// 写一系列的命令,用来完全重建数据集到filename文件中,被 REWRITEAOF and BGREWRITEAOF调用
// 为了使重建数据集的命令数量最小,Redis会使用 可变参的命令,例如RPUSH, SADD 和 ZADD。
// 然而每次单个命令的元素数量不能超过AOF_REWRITE_ITEMS_PER_CMD
int rewriteAppendOnlyFile(char *filename) {
    dictIterator *di = NULL;
    dictEntry *de;
    rio aof;
    FILE *fp;
    char tmpfile[256];
    int j;
    long long now = mstime();
    char byte;
    size_t processed = 0;

    // 创建临时文件的名字保存到tmpfile中
    snprintf(tmpfile,256,"temp-rewriteaof-%d.aof", (int) getpid());
    // 打开文件
    fp = fopen(tmpfile,"w");
    if (!fp) {
        serverLog(LL_WARNING, "Opening the temp file for AOF rewrite in rewriteAppendOnlyFile(): %s", strerror(errno));
        return C_ERR;
    }
    // 设置一个空sds给 保存子进程AOF时差异累计数据的sds
    server.aof_child_diff = sdsempty();
    // 初始化rio为文件io对象
    rioInitWithFile(&aof,fp);
    // 如果开启了增量时同步,防止在缓存中累计太多命令,造成写入时IO阻塞时间过长
    if (server.aof_rewrite_incremental_fsync)
        // 设置自动同步的字节数限制为AOF_AUTOSYNC_BYTES = 32MB
        riosetAutoSync(&aof,AOF_AUTOSYNC_BYTES);

    // 遍历所有的数据库
    for (j = 0; j < server.dbnum; j++) {
        // 按照格式构建 SELECT 命令内容
        char selectcmd[] = "*2\\r\\n$6\\r\\nSELECT\\r\\n";
        // 当前数据库指针
        redisDb *db = server.db+j;
        // 数据库的键值对字典
        dict *d = db->dict;
        // 如果数据库中没有键值对则跳过当前数据库
        if (dictSize(d) == 0) continue;
        // 创建一个安全的字典迭代器
        di = dictGetSafeIterator(d);
        if (!di) {
            // 创建失败返回C_ERR
            fclose(fp);
            return C_ERR;
        }

        // 将SELECT 命令写入AOF文件,确保后面的命令能正确载入到数据库
        if (rioWrite(&aof,selectcmd,sizeof(selectcmd)-1) == 0) goto werr;
        // 将数据库的ID吸入AOF文件
        if (rioWriteBulkLongLong(&aof,j) == 0) goto werr;

        // 遍历保存当前数据的键值对的字典
        while((de = dictNext(di)) != NULL) {
            sds keystr;
            robj key, *o;
            long long expiretime;

            // 当前节点保存的键值
            keystr = dictGetKey(de);
            // 当前节点保存的值对象
            o = dictGetVal(de);
            // 初始化一个在栈中分配的键对象
            initStaticStringObject(key,keystr);

            // 获取该键值对的过期时间
            expiretime = getExpire(db,&key);

            // 如果当前键已经过期,则跳过该键
            if (expiretime != -1 && expiretime < now) continue;

            // 根据值的对象类型,将键值对写到AOF文件中

            // 值为字符串类型对象
            if (o->type == OBJ_STRING) {
                char cmd[]="*3\\r\\n$3\\r\\nSET\\r\\n";
                // 按格式写入SET命令
                if (rioWrite(&aof,cmd,sizeof(cmd)-1) == 0) goto werr;
                /* Key and value */
                // 按格式写入键值对对象
                if (rioWriteBulkObject(&aof,&key) == 0) goto werr;
                if (rioWriteBulkObject(&aof,o) == 0) goto werr;
            // 值为列表类型对象
            } else if (o->type == OBJ_LIST) {
                // 重建一个列表对象命令,将键值对按格式写入
                if (rewriteListObject(&aof,&key,o) == 0) goto werr;
            // 值为集合类型对象
            } else if (o->type == OBJ_SET) {
                // 重建一个集合对象命令,将键值对按格式写入
                if (rewriteSetObject(&aof,&key,o) == 0) goto werr;
            // 值为有序集合类型对象
            } else if (o->type == OBJ_ZSET) {
                // 重建一个有序集合对象命令,将键值对按格式写入
                if (rewriteSortedSetObject(&aof,&key,o) == 0) goto werr;
            // 值为哈希类型对象
            } else if (o->type == OBJ_HASH) {
                // 重建一个哈希对象命令,将键值对按格式写入
                if (rewriteHashObject(&aof,&key,o) == 0) goto werr;
            } else {
                serverPanic("Unknown object type");
            }
            // 如果该键有过期时间,且没过期,写入过期时间
            if (expiretime != -1) {
                char cmd[]="*3\\r\\n$9\\r\\nPEXPIREAT\\r\\n";
                // 将过期键时间全都以Unix时间写入
                if (rioWrite(&aof,cmd,sizeof(cmd)-1) == 0) goto werr;
                if (rioWriteBulkObject(&aof,&key) == 0) goto werr;
                if (rioWriteBulkLongLong(&aof,expiretime) == 0) goto werr;
            }
            // 在rio的缓存中每次写了10M,就从父进程读累计的差异,保存到子进程的aof_child_diff中
            if (aof.processed_bytes > processed+1024*10) {
                // 更新已写的字节数
                processed = aof.processed_bytes;
                // 从父进程读累计写入的缓冲区的差异,在重写结束时链接到文件的结尾
                aofReadDiffFromParent();
            }
        }
        dictReleaseIterator(di);    //释放字典迭代器
        di = NULL;
    }

    // 当父进程仍然在发送数据时,先执行一个缓慢的同步,以便下一次最中的同步更快
    if (fflush(fp) == EOF) goto werr;
    if (fsync(fileno(fp)) == -1) goto werr;

    // 再次从父进程读取几次数据,以获得更多的数据,我们无法一直读取,因为服务器从client接受的数据总是比发送给子进程要快,所以当数据来临的时候,我们尝试从在循环中多次读取。
    // 如果在20ms之内没有新的数据到来,那么我们终止读取
    int nodata = 0;
    mstime_t start = mstime();  //读取的开始时间
    // 在20ms之内等待数据到来
    while(mstime()-start < 1000 && nodata < 20) {
        // 在1ms之内,查看从父进程读数据的fd是否变成可读的,若不可读则aeWait()函数返回0
        if (aeWait(server.aof_pipe_read_data_from_parent, AE_READABLE, 1) <= 0)
        {
            nodata++;   //更新新数据到来的时间,超过20ms则退出while循环
            continue;
        }
        // 当管道的读端可读时,清零nodata
        nodata = 0; /* Start counting from zero, we stop on N *contiguous* timeouts. */
        // 从父进程读累计写入的缓冲区的差异,在重写结束时链接到文件的结尾
        aofReadDiffFromParent();
    }

    // 请求父进程停止发送累计差异数据
    if (write(server.aof_pipe_write_ack_to_parent,"!",1) != 1) goto werr;
    // 将从父进程读ack的fd设置为非阻塞模式
    if (anetNonBlock(NULL,server.aof_pipe_read_ack_from_parent) != ANET_OK)
        goto werr;
    // 在5000ms之内,从fd读1个字节的数据保存在byte中,查看byte是否是'!'
    if (syncRead(server.aof_pipe_read_ack_from_parent,&byte,1,5000) != 1 ||
        byte != '!') goto werr;
    // 如果收到的是父进程发来的'!',则打印日志
    serverLog(LL_NOTICE,"Parent agreed to stop sending diffs. Finalizing AOF...");

    // 最后一次从父进程读累计写入的缓冲区的差异
    aofReadDiffFromParent();

    serverLog(LL_NOTICE,
        "Concatenating %.2f MB of AOF diff received from parent.",
        (double) sdslen(server.aof_child_diff) / (1024*1024));
    // 将子进程aof_child_diff中保存的差异数据写到AOF文件中
    if (rioWrite(&aof,server.aof_child_diff,sdslen(server.aof_child_diff)) == 0)
        goto werr;

    // 再次冲洗文件缓冲区,执行同步操作
    if (fflush(fp) == EOF) goto werr;
    if (fsync(fileno(fp)) == -1) goto werr;
    if (fclose(fp) == EOF) goto werr;   //关闭文件

    // 原子性的将临时文件的名字,改成appendonly.aof
    if (rename(tmpfile,filename) == -1) {
        serverLog(LL_WARNING,"Error moving temp append only file on the final destination: %s", strerror(errno));
        unlink(tmpfile);
        return C_ERR;
    }
    // 打印日志
    serverLog(LL_NOTICE,"SYNC append only file rewrite performed");
    return C_OK;

// 写错误处理
werr:
    serverLog(LL_WARNING,"Write error writing append only file on disk: %s", strerror(errno));
    fclose(fp);
    unlink(tmpfile);
    if (di) dictReleaseIterator(di);
    return C_ERR;
}

我们可以看到在关闭文件之前,多次执行了从重写缓冲区做读操作的aofReadDiffFromParent()。在最后执行了rioWrite(&aof,server.aof_child_diff,sdslen(server.aof_child_diff)操作,这就是把AOF重写缓冲区保存服务器主进程新命令追加写到AOF文件中,以此保证了AOF文件的数据状态和数据库的状态一致。

2.3 父子进程间的通信

整个重写的过程中,父子进行通信的地方只有一个,那就是最后父进程在子进程做重写操作完成时,把子进程重写操作期间所执行的新命令发送给子进程的重写缓冲区,子进程然后将重写缓冲区的数据追加到AOF文件中。

Redis AOF持久化机制源码注释

而父进程是如何将差异数据发送给子进程呢?Redis中使用了管道技术进程间通信(IPC)之管道详解

在上文提到的rewriteAppendOnlyFileBackground()函数首先就创建了父子通信的管道。

父子进程间通信时共创建了三组管道

//下面两个是发送差异数据管道
int aof_pipe_write_data_to_child;   //父进程写给子进程的文件描述符
int aof_pipe_read_data_from_parent; //子进程从父进程读的文件描述符

//下面四个是应答ack的管道
int aof_pipe_write_ack_to_parent;   //子进程写ack给父进程的文件描述符
int aof_pipe_read_ack_from_child;   //父进程从子进程读ack的文件描述符
int aof_pipe_write_ack_to_child;    //父进程写ack给子进程的文件描述符
int aof_pipe_read_ack_from_parent;  //子进程从父进程读ack的文件描述符

当将feedAppendOnlyFile()将命令追加到缓冲区的同时,还在最后调用了aofRewriteBufferAppend()函数,这个函数就是将命令追加到AOF的缓冲区,然而,在追加完成后会执行这么一段代码

// 获取当前事件正在监听的类型,如果等于0,未设置,则设置管道aof_pipe_write_data_to_child为可写状态
// 当然aof_pipe_write_data_to_child可以用的时候,调用aofChildWriteDiffDatah()函数写数据
if (aeGetFileEvents(server.el,server.aof_pipe_write_data_to_child) == 0) {
    aeCreateFileEvent(server.el, server.aof_pipe_write_data_to_child,
    AE_WRITABLE, aofChildWriteDiffData, NULL);
}

当然aof_pipe_write_data_to_child可以写的时候,调用aofChildWriteDiffDatah()函数写数据,而在aofChildWriteDiffDatah()函数中,则将重写缓冲区数据写到管道中。函数源码如下:

// 事件处理程序发送一些数据给正在做AOF重写的子进程,我们发送AOF缓冲区一部分不同的数据给子进程,当子进程完成重写时,重写的文件会比较小
void aofChildWriteDiffData(aeEventLoop *el, int fd, void *privdata, int mask) {
    listNode *ln;
    aofrwblock *block;
    ssize_t nwritten;
    UNUSED(el);
    UNUSED(fd);
    UNUSED(privdata);
    UNUSED(mask);

    while(1) {
        // 获取缓冲块链表的头节点地址
        ln = listFirst(server.aof_rewrite_buf_blocks);
        // 获取缓冲块地址
        block = ln ? ln->value : NULL;
        // 如果aof_stop_sending_diff为真,则停止发送累计的不同数据给子进程,或者缓冲块为空
        // 则将管道的写端从服务器的监听队列中删除
        if (server.aof_stop_sending_diff || !block) {
   

以上是关于Redis源码剖析和注释(十八)--- Redis AOF持久化机制的主要内容,如果未能解决你的问题,请参考以下文章

Redis源码剖析 - Redis IO操作之rio

Redis源码剖析之AOF

Redis源码剖析--列表list

Redis源码剖析--列表list

Redis源码剖析 - Redis之数据库redisDb

Redis源码剖析 - Redis IO操作之rio