图像识别深度学习主流方案平台比较

Posted quickembed

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了图像识别深度学习主流方案平台比较相关的知识,希望对你有一定的参考价值。

嵌入式AI主要用于图像识别和语音识别,图像识别主要用于工业、自动化、医疗等行业。以医疗行业为例,由于医疗保健行业大量使用大数据及嵌入式人工智能,进而精准改善疾病诊断、医疗人员与患者之间人力的不平衡、降低医疗成本、促进跨行业合作关系。此外嵌入式人工智能还广泛应用于临床试验、大型医疗计划、医疗咨询与宣传推广和销售开发。嵌入式人工智能导入医疗保健行业从2016年到2022年维持很高成长,预计从2016年的6.671亿美元达到2022年的79.888亿美元年均复合增长率为52.68%。(嵌入式AI图像识别市场数据来源参考

多家半导体厂商已经推出嵌入式AI平台,比如

  • 华为海思今年4月份发布的Hi3559A,这个样品超过100美金/片
  • 集成寒武纪AI核(遗憾不是最新的版本,因为最近寒武纪又发布最新的AI版本,同时还集成大名鼎鼎Cadence的 4核DSP);
  • 赛灵思Xilinx的FPGA—— Zynq 7020,ZU2CG开发难度大,价格不菲,还有其他家的ARM+FPGA方案也不便宜,开发难度也不小;
  • 英伟达的GPU——JETSON TX2,TX2核心板英伟达自己生产,价格太贵,不适合产品小型化生产;
  • TI 的TDA2x系列和DAVINCI系列最新的DM505,以及后续的版本,专注辅助驾驶ADAS,他的64bit浮点DSP C66X+EYE也支持深度学习(不要小瞧EYE,深度学习一个EYE比2个C66X 浮点DSP还强),不过功耗太高,软件资源也不好搞到,海掏买美国D3公司DEMO板价格不菲,而且没技术支持开发周期过长,价格也不便宜。
  • Intel的Movidius Myriad 2,在软件资源方面,Intel推出神经计算棒的免费NCSDK,这个软件资源让很多公司看到嵌入AI领域的希望,很多公司都在嵌入式开发板树莓派3上面加这个神经计算棒学习。

华为海思Hi3516A/D + VPU和Hi3519V101+VPU,因为海思Hi3516A/D和Hi3519V101支持H.264/H.265编解码,带有ISP,还带有一个IVE(智能视频分析算法加速器,确切的说是传统机器视觉算法加速器),然后再加上Intel Movidius 这个支持深度学习的VPU,就是上海速嵌智造的可深度定制开发的ARM+VPU深度学习平台。也就是说同时支持传统机器视觉算法+深度学习算法,而且还支持H.265编解码。

海思Hi3516A/D和Hi3519V101的IVE支持的功能太过技术细节,将另文讲述

Movidius Myriad 2 VPU (Vision Processing Unit——视觉处理器)被称作为“第三次影像革命的开端”的芯片方案。Movidius 已经被Intel收购,Intel Movidius Myriad 2 VPU可在不同目标应用中提供低功耗、高性能的视觉处理解决方案,其中包括嵌入式深度神经网络、位姿估计、室内导航、3D深度感应、3D制图(3D扫描建模),视觉惯性测距,以及手势/眼部跟踪,基于深度学习的环境感知。
安防巨头海康和大华把Movidius Myriad 2(MA2450)视觉处理单元应用于视频监控摄像头,在完成监控和录制等传统任务外,提供人群密度监测、立体视觉、面部识别、人数统计、行为分析以及检测非法停放车辆等先进的视频分析功能。Myriad 2为大疆最近发布的首款迷你无人机Spark提供了视觉智能技术,大批量生产。
这颗芯片被一分为二,其中一部分有12个SHAVE 128位处理器,专为影像处理负载做优化,每颗都运作在600MHz的频率下,而且有超频潜能,第一代的180MHz显然是不够看的;与这些处理器相匹配的是Movidius称之SIPP过滤器(Streaming Inline Processing Pipeline filters)的硬件加速器——可完成一些预设的影像处理任务,比如将来自不同类型摄像头的数据融合到一起,或者将多个视频内容接合到一起;另外还有2个32位RISC处理器用于芯片管理,这就是LEON4(LEON是一款32位RISC处理器,支持SPARC V8指令集,由欧洲航天总局旗下的Gaisler Research开发、维护,目的是摆脱欧空局对美国航天级处理器的依赖。LEON的主要产品线包括LEON2、LEON3、LEON4)。SHAVE这一端对原始影像数据做计算处理,OEM厂商可以选择不同的方案;SIPP则可协力处理通常任务;集中型的寄存器结构令芯片两侧可同时对相同的数据做处理。这些对于降低延迟是相当有价值的。
鉴于这样的架构设计,Myriad 2 VPU芯片面积是6.5mm,厚度1mm,具体的性能则是可以48fps的帧率同时处理来自12个1300万像素摄像头的数据,以60fps拍摄4K视频自然也是毫无压力,功耗低于0.5W(台积电28nm HPC工艺)。按照El-Ouazzane的说法,相比能够提供同等效果的GPU,Myriad 2的功耗低了最少10倍。
深度学习框架方面,支持Caffe,Caffe的全称是Convolutional Architecture for Fast Feature Embedding,是一个清晰、高效的开源深度学习框架,核心语言是C++,支持命令行、Python和Matlab接口,既可以在CPU上运行也可以在GPU上运行。同时也支持Google的TensorFlow。所以C/C++、Python程序员可以快速切入深度学习的架构去工作。前面提到的Intel Movidius神经元棒,包括他们提供的免费NCSDK软件包,可以满足那些C/C++程序员、Python程序员轻松在WIN下直接开发AI软件,也可以在ubuntu下直接开发软件,很方便,而在嵌入式前端,同样也可以支持NCSDK软件包,熟悉Caffe和TensorFlow应该很快上手进行算法优化和设计。
而2017年推出的Movidius Myriad X(MA2485)将提供十倍于Myriad 2同样功率范围内深层神经网络(DNN)的性能。

嵌入式AI MA2485

Myriad X 有4个可C编程的128位VLIW矢量处理器和可配置的MIPI通道,并扩展了2.5 MB的芯片内存和更多的固定功能成像/视觉加速器。就像在Myriad X中发现的一样,Myriad X的矢量单位都是专有的SHAVE (流混合的架构矢量引擎)处理器,对计算机视觉工作负载进行了优化。Myriad X也支持最新的LPDDR4,MA2085变体只配置了外部存储器接口。
Myriad X的另一个新功能是4K硬件编码,4K在30Hz(H.264/H.265)和60 Hz(M/JPEG)支持。从接口上看,Myriad X带来了USB 3.1和PCIe 3.0支持,这两个都是Myriad VPU家族新支持的接口。与Myriad 2一样,所有这些都是在同一个小于2W的功率范围中完成的,更具体地说是在1W以内,使用台积电16nm FFC工艺。所以说,在如此低功耗下就能完成很多视频处理和深度学习,前面提到的几个平台根本无法做到。
从目前前端图像识别市场反馈的角度看,这个Myriad 2 VPU(MA2450) 和 Myriad X VPU(MA2485)芯片出货量比较大。在开发板-学习板方面,树莓派3+可以直接拿神经计算棒进行深度学习算法开发。如果是产品设计,速嵌智造推荐ARM + VPU方案可以快速定制开发出产品。我们在HI3516D+VPU和Hi3519V101+VPU板上测试:

 

 

以上是关于图像识别深度学习主流方案平台比较的主要内容,如果未能解决你的问题,请参考以下文章

06-01 DeepLearning-图像识别

基于深度学习的图标型验证码识别系统

人工智能热门技术是图像识别,5大应用场景无法反驳

深度学习-详解卷积神经网络下

第十八节基于传统图像处理的目标检测与识别(HOG+SVM附代码)

论文推介|融合判别式深度特征学习的图像识别算法