基于Python的爬虫演示示例-以电影网站为例
Posted 编程指南针
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了基于Python的爬虫演示示例-以电影网站为例相关的知识,希望对你有一定的参考价值。
作者主页:编程指南针
作者简介:Java领域优质创作者、CSDN博客专家 、掘金特邀作者、多年架构师设计经验、腾讯课堂常驻讲师
主要内容:Java项目、毕业设计、简历模板、学习资料、面试题库、技术互助
文末获取源码
一,项目简介
基于Python实现豆瓣电影数据的抓去,并存入本在数据库。
数据库结构准备:
create table if not exists `categories` (
`id` int(11) NOT NULL PRIMARY KEY,
`type` varchar (255) NOT NULL DEFAULT ''
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
create table if not exists `movies`(
`id` int(11) NOT NULL PRIMARY KEY AUTO_INCREMENT,
`cover` varchar (255) NOT NULL DEFAULT '',
`title` varchar (50) NOT NULL DEFAULT '',
`date` varchar (10) NOT NULL DEFAULT '',
`rate` float DEFAULT 0,
`director` varchar (100) NOT NULL DEFAULT '',
`scriptwriter` varchar(100) NOT NULL DEFAULT '',
`actors` text,
`district` varchar(255) DEFAULT '',
`language` varchar (255) DEFAULT '',
`duration` varchar (100) DEFAULT '',
`abs` text,
UNIQUE (`title`)
)ENGINE=InnoDB DEFAULT CHARSET=utf8;
create table if not exists `movie-category` (
`id` BIGINT NOT NULL PRIMARY KEY AUTO_INCREMENT,
`mid` int(11) NOT NULL,
`cid` int(11) NOT NULL,
KEY `fk_on_movie_id` (`mid`),
CONSTRAINT `fk_on_movie_id` FOREIGN KEY (`mid`) REFERENCES `movies` (`id`) ON DELETE CASCADE ON UPDATE CASCADE,
KEY `fk_on_category_id` (`cid`),
CONSTRAINT `fk_on_category_id` FOREIGN KEY (`cid`) REFERENCES `categories` (`id`) ON DELETE CASCADE ON UPDATE CASCADE
)ENGINE=InnoDB DEFAULT CHARSET=utf8;
INSERT INTO `categories` VALUES (1,'剧情');
INSERT INTO `categories` VALUES (2,'喜剧');
INSERT INTO `categories` VALUES (3,'动作');
INSERT INTO `categories` VALUES (4,'爱情');
INSERT INTO `categories` VALUES (5,'科幻');
INSERT INTO `categories` VALUES (6,'动画');
INSERT INTO `categories` VALUES (7,'悬疑');
INSERT INTO `categories` VALUES (8,'惊悚');
INSERT INTO `categories` VALUES (9,'恐怖');
INSERT INTO `categories` VALUES (10,'犯罪');
INSERT INTO `categories` VALUES (11,'同性');
INSERT INTO `categories` VALUES (12,'音乐');
INSERT INTO `categories` VALUES (13,'歌舞');
INSERT INTO `categories` VALUES (14,'传记');
INSERT INTO `categories` VALUES (15,'历史');
INSERT INTO `categories` VALUES (16,'战争');
INSERT INTO `categories` VALUES (17,'西部');
INSERT INTO `categories` VALUES (18,'奇幻');
INSERT INTO `categories` VALUES (19,'冒险');
INSERT INTO `categories` VALUES (20,'灾难');
INSERT INTO `categories` VALUES (21,'武侠');
INSERT INTO `categories` VALUES (22,'情色');
二,环境介绍
语言环境:Python3.7+scrapy
数据库:mysql: mysql5.7
开发工具:IDEA或eclipse
三,核心代码展示
数据模型:items.py
# Define here the models for your scraped items
#
# See documentation in:
# https://docs.scrapy.org/en/latest/topics/items.html
import scrapy
class DoubanItem(scrapy.Item):
# define the fields for your item here like:
# name = scrapy.Field()
#电影标题
title = scrapy.Field()
#导演
director = scrapy.Field()
#编剧
scriptwriter = scrapy.Field()
#演员
actors = scrapy.Field()
#上映日期
date = scrapy.Field()
#评分
rate = scrapy.Field()
#国家/地区
district = scrapy.Field()
#语言
language = scrapy.Field()
#封面图片
cover = scrapy.Field()
#简介
abs = scrapy.Field()
#类型
categories = scrapy.Field()
#时长
duration = scrapy.Field()
数据存储工具定义:pipelines.py
# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html
# useful for handling different item types with a single interface
from scrapy.exceptions import DropItem
from scrapy.http import Request
from scrapy.pipelines.images import ImagesPipeline
import pymysql
import random
class DoubanPipeline:
def process_item(self, item, spider):
return item
#根据取得的图片url重新请求,下载图片到本地
class DownloadImagePipeline(ImagesPipeline):
default_headers =
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.111 Safari/537.36",
#"Cookie":'_vwo_uuid_v2=D65EBF690D9454DE4C13354E37DC5B9AA|3bb7e6e65f20e31141b871b4fea88dc2; __yadk_uid=QBp8bLKHjCn5zS2J5r8xV7327R0wnqkU; douban-fav-remind=1; gr_user_id=0a41d8d1-fe39-4619-827a-17961cf31795; viewed="35013197_10769749_23008813_26282806_34912177_22139960_35003794_30249691_26616244_27035127"; push_noty_num=0; push_doumail_num=0; __utmv=30149280.21320; bid=gplG4aEN4Xc; ll="108288"; ap_v=0,6.0; __utma=30149280.819011260.1572087992.1604448803.1604453561.105; __utmc=30149280; __utmz=30149280.1604453561.105.65.utmcsr=accounts.douban.com|utmccn=(referral)|utmcmd=referral|utmcct=/; __gads=ID=eddb65558a1da756-223ab4f88bc400c8:T=1604453562:RT=1604453562:S=ALNI_MZGB_I69qmiL2tt3lm57JVX1i4r2w; __utmb=30149280.4.10.1604453561; dbcl2="213202515:Ip9mjwUAab4"; ck=wxUS; __utma=223695111.897479705.1572088003.1604448803.1604455298.71; __utmb=223695111.0.10.1604455298; __utmc=223695111; __utmz=223695111.1604455298.71.42.utmcsr=accounts.douban.com|utmccn=(referral)|utmcmd=referral|utmcct=/; _pk_ref.100001.4cf6=%5B%22%22%2C%22%22%2C1604455298%2C%22https%3A%2F%2Faccounts.douban.com%2F%22%5D; _pk_ses.100001.4cf6=*; _pk_id.100001.4cf6=e11874c5506d4ab1.1572088003.71.1604455342.1604450364.'
def get_media_requests(self, item, info):
#print('到这里来了...')
image_url = item['cover']
yield Request(
image_url,
headers=self.default_headers)
#get_media_requests函数返回后执行
def item_completed(self, results, item, info):
image_paths = [x['path'] for ok, x in results if ok]
if not image_paths:
raise DropItem("Item contains no images")
#返回的图片地址是full+文件名的格式,由于我是边爬边下载,所以每次只有一张图片,但是返回的是
#数组,函数设计为多张图片,我将‘full’替换成了自己后台接口的地址,方便数据库中的存储
image_paths = str(image_paths[0]).replace('full','http://localhost:8443/api/file')
item['cover'] = image_paths
return item
# 将电影信息存入到数据库中
class DBPipeline(object):
def __init__(self):
# connection database
# 后面三个依次是数据库连接名、数据库密码、数据库名称
self.connect = pymysql.connect(host='127.0.0.1', user='root', password='root',
db='fivesix',charset='utf8',port=3306)
# get cursor
self.cursor_1 = self.connect.cursor()
self.cursor_2 = self.connect.cursor()
self.type_to_id =
'剧情': 1,'喜剧':2, '动作':3,
'爱情': 4, '科幻':5, '动画':6,
'悬疑': 7, '惊悚' : 8, '恐怖' : 9,
'犯罪': 10, '同性':11, '音乐':12,
'歌舞':13, '传记':14,'历史':15,
'战争':16, '西部':17, '奇幻':18,
'冒险':19, '灾难':20,'武侠':21, '情色':22
print("连接数据库成功")
def process_item(self, item, spider):
if item['title'] == '':
return
# sql语句
insert_movie_sql = """
insert ignore into `movies`(cover,title, director, scriptwriter, actors, district,rate,date,language,duration,abs) VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)
"""
insert_mc_sql = """
insert into `movie-category` (mid,cid) values (%s,%s)
"""
# 执行插入数据到数据库操作
self.cursor_1.execute(insert_movie_sql, (item['cover'], item['title'], item['director'], item['scriptwriter'],
item['actors'],item['district'],item['rate'],
item['date'],item['language'],item['duration'],item['abs']))
mid = self.cursor_1.lastrowid
#处理标签
cids = []
categories = item['categories'].split('/')
for c in categories:
if c not in self.type_to_id.keys():continue
cids.append(self.type_to_id.get(c))
#插入关联表
print(cids)
for cid in cids:
self.cursor_2.execute(insert_mc_sql,(mid,cid))
# 提交,不进行提交无法保存到数据库
self.connect.commit()
def close_spider(self, spider):
# 关闭游标和连接
self.cursor_1.close()
self.cursor_2.close()
self.connect.close()
爬虫核心代码:movies.py
# -*- coding: utf-8 -*-
import scrapy
import json
import re
import time
from douban.items import DoubanItem
from fake_useragent import UserAgent
import random
class MovieHotSpider(scrapy.Spider):
#爬虫的名称,在命令行可以方便的运行爬虫
name = "movie_hot"
allowed_domains = ["movie.douban.com"]
#pro = ['139.224.37.83','115.223.7.110','221.122.91.75']
# 拼接豆瓣电影URL
BASE_URL = 'https://movie.douban.com/j/search_subjects?type=movie&tag=%s&sort=recommend&page_limit=%s&page_start=%s'
MOVIE_TAG = '华语'
PAGE_LIMIT = 20
page_start = 0
domains = BASE_URL % (MOVIE_TAG, PAGE_LIMIT, page_start)
#伪装浏览器
headers =
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.111 Safari/537.36"
#,"Cookie":'_vwo_uuid_v2=D65EBF690D9454DE4C13354E37DC5B9AA|3bb7e6e65f20e31141b871b4fea88dc2; __yadk_uid=QBp8bLKHjCn5zS2J5r8xV7327R0wnqkU; douban-fav-remind=1; gr_user_id=0a41d8d1-fe39-4619-827a-17961cf31795; viewed="35013197_10769749_23008813_26282806_34912177_22139960_35003794_30249691_26616244_27035127"; push_noty_num=0; push_doumail_num=0; __utmv=30149280.21320; bid=gplG4aEN4Xc; ll="108288"; ap_v=0,6.0; __utma=30149280.819011260.1572087992.1604448803.1604453561.105; __utmc=30149280; __utmz=30149280.1604453561.105.65.utmcsr=accounts.douban.com|utmccn=(referral)|utmcmd=referral|utmcct=/; __gads=ID=eddb65558a1da756-223ab4f88bc400c8:T=1604453562:RT=1604453562:S=ALNI_MZGB_I69qmiL2tt3lm57JVX1i4r2w; __utmb=30149280.4.10.1604453561; dbcl2="213202515:Ip9mjwUAab4"; ck=wxUS; __utma=223695111.897479705.1572088003.1604448803.1604455298.71; __utmb=223695111.0.10.1604455298; __utmc=223695111; __utmz=223695111.1604455298.71.42.utmcsr=accounts.douban.com|utmccn=(referral)|utmcmd=referral|utmcct=/; _pk_ref.100001.4cf6=%5B%22%22%2C%22%22%2C1604455298%2C%22https%3A%2F%2Faccounts.douban.com%2F%22%5D; _pk_ses.100001.4cf6=*; _pk_id.100001.4cf6=e11874c5506d4ab1.1572088003.71.1604455342.1604450364.'
#总共爬取的页数
pages = 100
# 爬虫从此开始
def start_requests(self):
print('~~~~爬取列表: '+ self.domains)
yield scrapy.Request(
url = self.domains,
headers=self.headers,
callback=self.request_movies
)
# 分析列表页
def request_movies(self, response):
infos = response.text
# 使用JSON模块解析响应结果
infos = json.loads(infos)
# 迭代影片信息列表
for movie_info in infos['subjects']:
print('~~~爬取电影: ' + movie_info['title'] + '/'+ movie_info['rate'])
# 提取影片页面url,构造Request发送请求,并将item通过meta参数传递给影片页面解析函数
yield scrapy.Request(
url = str(movie_info['url']),
headers = self.headers,
callback = self.request_movie,
dont_filter=True
)
#如果已经爬完pages或者当前标签下没有更多电影时退出
if self.pages > 0 and len(infos['subjects']) == self.PAGE_LIMIT:
self.pages -= 1
self.page_start += self.PAGE_LIMIT
url = self.BASE_URL % (self.MOVIE_TAG,self.PAGE_LIMIT,self.page_start)
time.sleep(5)
print('-----爬取列表: ' + url)
yield scrapy.Request(
url=url,
headers=self.headers,
callback=self.request_movies,
dont_filter=True
)
# 分析详情页
def request_movie(self, response):
#组装数据
movie_item = DoubanItem()
title = response.css('div#content>h1>span:nth-child(1)::text').extract_first()
t = re.findall('[\\u3002\\uff1b\\uff0c\\uff1a\\u201c\\u201d\\uff08\\uff09\\u3001\\uff1f\\u300a\\u300b\\u4e00-\\u9fa5_0-9]', title)
#获取非info区域数据
movie_item['title'] = ''.join(t)
movie_item['date'] = response.css('div#content>h1>span.year::text').extract_first()[1:-1]
movie_item['rate'] = response.css('strong.rating_num::text').extract_first()
#movie_item['commentCount'] = response.css('div.rating_sum>a.rating_people>span::text').extract_first()
#movie_item['start'] = '/'.join(response.css('span.rating_per::text').extract())
#movie_item['better'] = '/'.join(response.css('div.rating_betterthan>a::text').extract())
movie_item['abs'] = response.css('#link-report>span::text').extract_first().strip()
movie_item['cover'] = response.css('#mainpic>a>img::attr(src)').extract_first()
# 获取整个信息字符串
info = response.css('div.subject div#info').xpath('string(.)').extract_first()
# 提取所以字段名
fields = [s.strip().replace(':', '') for s in response.css('div#info span.pl::text').extract()]
# 提取所有字段的值
values = [re.sub('\\s+', '', s.strip()) for s in re.split('\\s*(?:%s):\\s*' % '|'.join(fields), info)][1:]
# 处理列名称
for i in range(len(fields)):
if '导演' == fields[i]:
fields[i] = 'director'
if '编剧' == fields[i]:
fields[i] = 'scriptwriter'
if '主演' == fields[i]:
fields[i] = 'actors'
if '类型' == fields[i]:
fields[i] = 'categories'
if '制片国家/地区' == fields[i]:
fields[i] = 'district'
if '语言' == fields[i]:
fields[i] = 'language'
if '片长' == fields[i]:
fields[i] = 'duration'
# 将所有信息填入item
other_info = list(zip(fields,values))
for field,value in other_info:
if field in ['IMDb链接','上映日期','官方网站','又名']:
other_info.remove((field,value))
final_info = dict(other_info[:-1])
movie_item.update(final_info)
# 处理缺失字段
if not 'director' in movie_item.keys():
movie_item['director'] = '/'
if not 'scriptwriter' in movie_item.keys():
movie_item['scriptwriter'] = '/'
if not 'actors' in movie_item.keys():
movie_item['actors'] = '/'
if not 'categories' in movie_item.keys():
movie_item['categories'] = '/'
if not 'district' in movie_item.keys():
movie_item['district'] = '/'
if not 'language' in movie_item.keys():
movie_item['language'] = '/'
if not 'duration' in movie_item.keys():
movie_item['duration'] = '/'
print('~完成爬取电影: ' + movie_item['title'] + '/' + movie_item['rate'])
#将数据加入到字典中
yield movie_item
四,项目总结
爬取的数据最终会存到MYSQL服务器的表中,可以写程序将数据展示出来。注意的时会对IP进行限制封号,200条为限,超过IP会被限制,可以换一个IP进行抓去。主要研究爬虫的基本使用规范和语法,相对较为简单,供大家学习参考
以上是关于基于Python的爬虫演示示例-以电影网站为例的主要内容,如果未能解决你的问题,请参考以下文章
python爬虫热点项目—滑块验证码项目(以Bilili为例)
Python 爬虫篇 - 调用有道翻译api接口翻译外文网站的整篇西班牙文实战演示。爬取西班牙语文章调用有道翻译接口进行整篇翻译