有赞大数据:Flume 数据采集服务最佳实践

Posted 程序员泥瓦匠

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了有赞大数据:Flume 数据采集服务最佳实践相关的知识,希望对你有一定的参考价值。

一定要点蓝字关注我!!!



上一篇:



本文: 

文 | hujiahua on 大数据


一、前言

Flume 是一个分布式的高可靠,可扩展的数据采集服务。

Flume 在有赞的大数据业务中一直扮演着一个稳定可靠的日志数据“搬运工”的角色。本文主要讲一下有赞大数据部门在 Flume 的应用实践,同时也穿插着我们对 Flume 的一些理解。

二、Delivery 保证

认识 Flume 对事件投递的可靠性保证是非常重要的,它往往是我们是否使用 Flume 来解决问题的决定因素之一。

消息投递的可靠保证有三种:

  • At-least-once

  • At-most-once

  • Exactly-once

基本上所有工具的使用用户都希望工具框架能保证消息 Exactly-once ,这样就不必在设计实现上考虑消息的丢失或者重复的处理场景。但是事实上很少有工具和框架能做到这一点,真正能做到这一点所付出的成本往往很大,或者带来的额外影响反而让你觉得不值得。假设 Flume 真的做到了 Exactly-once ,那势必降低了稳定性和吞吐量,所以 Flume 选择的策略是 At-least-once 。

当然这里的 At-least-once 需要加上引号,并不是说用上 Flume 的随便哪个组件组成一个实例,运行过程中就能保存消息不会丢失。事实上 At-least-once 原则只是说的是 SourceChannelSink 三者之间上下投递消息的保证。而当你选择 MemoryChannel 时,实例如果异常挂了再重启,在 channel 中的未被 sink 所消费的残留数据也就丢失了,从而没办法保证整条链路的 At-least-once。

Flume 的 At-least-once 保证的实现基础是建立了自身的 Transaction 机制。Flume 的 Transaction 有4个生命周期函数,分别是 startcommitrollbackclose。 当 SourceChannel 批量投递事件时首先调用 start 开启事务,批量 put 完事件后通过 commit 来提交事务,如果 commit 异常则 rollback ,然后 close 事务,最后 Source 将刚才提交的一批消息事件向源服务 ack(比如 kafka 提交新的 offset )。 Sink消费 Channel 也是相同的模式,唯一的区别就是 Sink 需要在向目标源完成写入之后才对事务进行 commit。两个组件的相同做法都是只有向下游成功投递了消息才会向上游 ack,从而保证了数据能 At-least-once 向下投递。

三、datay 应用场景

基于 mysql binlog 的数仓增量同步( datay 业务)是大数据这边使用 Flume 中一个比较经典的应用场景,datay 具体业务不详细说明,需要强调的是它对Flume的一个要求是必须保证在 nsq(消息队列)的 binlog消息能可靠的落地到 hdfs ,不允许一条消息的丢失,需要绝对的 At-least-once。

Flume 模型本身是基于 At-least-once 原则来传递事件,所以需要需要考虑是在各种异常情况(比如进程异常挂了)下的 At-least-once 保证。显然 MemoryChannel 无法满足,所以我们用 FlieChannel 做代替。由于公司目前是使用 nsq 作为 binlog 的消息中转服务,故我们没有办法使用现有的 KafkaSource,所以基于公司的 nsq sdk 扩展了 NsqSource。这里需要说明的是为了保证 At-least-once, Source 源必须支持消息接收的 ack 机制,比如 kafka 客户端只有认为消费了消息后,才对 offset 进行提交,不然就需要接受重复的消息。

于是我们第一个版本上线了,看上去很有保障了,即使进程异常挂了重启也不会丢数据。

有赞大数据:Flume 数据采集服务最佳实践

可能有同学想到一个关键性的问题:如果某一天磁盘坏了而进程异常退出,而 FileChannel 刚好又有未被消费的事件数据,这个时候不就丢数据了吗?虽然磁盘坏了是一个极低的概率,但这确实是一个需要考虑的问题。

在 Flume 现有组件中比 FlieChannel 更可靠的,可能想到的是 KafkaChannel ,kafka 可以对消息保留多个副本,从而增强了数据的可靠性。但是我们第二版本的方案没有选择它,而是直接扩展出 NsqChannel 。于是第二个版本就有了。

有赞大数据:Flume 数据采集服务最佳实践

初次使用 Flume 的用户往往陷入到必须搭配 Source + Channel + Sink 三个组件的固有模式,事实上我们不一定要三个组件都使用上。另外直接 NsqChannelHDFSEventSink 的有几个好处:

  • 每个消息的传递只需要一次事务,而非两次,性能上更佳。

  • 避免引入了新的 kafka 服务,减少了资源成本的同时保持架构上更简单从而更稳定。

四、定制化扩展

Flume 在各个组件的扩展性支持具有非常好的设计考虑。

当无法满足我们的自定义需求,我们可以选择合适的组件上进行扩展。下面就讲讲我们扩展的一些内容。

  • NsqSource

在 Flume 定制化一个 Source 比较简单,继承一个已有通用实现的抽象类,实现相对几个生命周期方法即可。这里说明注意的是 Flume 组件的生命周期在可能被会调用多次,比如 Flume 具有自动发现实例配置发生变化并 restart 各个组件,这种情况需要考虑资源的正确释放。

  • HdfsEventSink 扩展配置。

它本身就具有 role file 功能,比如当 Sink 是按小时生成文件,有这一个小时的第一个事件创建新的文件,然后经过固定的 role 配置时间(比如一小时)关闭文件。这里存在的问题就是如果源平时的数据量不大,比如8点这个小时的第一个事件是在8点25分来临,那就是说需要9点25才能关闭这个文件。由于没有关闭的tmp文件会被离线数据任务的计算引擎所忽略,在小时级的数据离线任务就没办法得到实时的数据。而我们做的改造就是 roll file 基于整点时间,而不是第一次事件的时间,比如固定的05分关闭上一次小时的文件,而离线任务调度时间设置在每小时的05分之后就能解决这个问题。最终的效果给下图: 

  • MetricsReportServer

当我们需要收集 Flume 实例运行时的各个组件 counter metric ,就需要开启 MonitorService服务。自定义了一个定期发生 http 请求汇报 metric 到一个集中的 web 服务。原生的 HTTPMetricsServer 也是基于 http 服务,区别在于它将 Flume 作为 http 服务端,而我们将很多实例部署在一台机器上,端口分配成了比较头疼的问题。

当我们收集到以下的 counter metric 时,就可以利用它来实现一些监控报警。

 
   
   
 
  1. {

  2. "identity":"olap_offline_daily_olap_druid_test_timezone_4@49",

  3. "startTime":1544287799839,

  4. "reportCount":4933,

  5. "metrics":{

  6. "SINK.olap_offline_daily_olap_druid_test_timezone_4_snk":{

  7. "ConnectionCreatedCount":"9",

  8. "ConnectionClosedCount":"8",

  9. "Type":"SINK",

  10. "BatchCompleteCount":"6335",

  11. "BatchEmptyCount":"2",

  12. "EventDrainAttemptCount":"686278",

  13. "StartTime":"1544287799837",

  14. "EventDrainSuccessCount":"686267",

  15. "BatchUnderflowCount":"5269",

  16. "StopTime":"0",

  17. "ConnectionFailedCount":"48460"

  18. },

  19. "SOURCE.olap_offline_daily_olap_druid_test_timezone_4_src":{

  20. "KafkaEventGetTimer":"26344146",

  21. "AppendBatchAcceptedCount":"0",

  22. "EventAcceptedCount":"686278",

  23. "AppendReceivedCount":"0",

  24. "StartTime":"1544287800219",

  25. "AppendBatchReceivedCount":"0",

  26. "KafkaCommitTimer":"14295",

  27. "EventReceivedCount":"15882278",

  28. "Type":"SOURCE",

  29. "OpenConnectionCount":"0",

  30. "AppendAcceptedCount":"0",

  31. "KafkaEmptyCount":"0",

  32. "StopTime":"0"

  33. },

  34. "CHANNEL.olap_offline_daily_olap_druid_test_timezone_4_cha":{

  35. "ChannelCapacity":"10000",

  36. "ChannelFillPercentage":"0.11",

  37. "Type":"CHANNEL",

  38. "ChannelSize":"11",

  39. "EventTakeSuccessCount":"686267",

  40. "StartTime":"1544287799332",

  41. "EventTakeAttemptCount":"715780",

  42. "EventPutAttemptCount":"15882278",

  43. "EventPutSuccessCount":"686278",

  44. "StopTime":"0"

  45. }

  46. }

  47. }

  • 事件时间戳拦截。有一些 hdfs sink 业务对消息事件的时间比较敏感,同一小时的数据必须放在同一个目录里,这就要求使用 HdfsEventSink 的时候不能使用系统时间来计算文件目录,而是应该基于消息内容中的某个时间戳字段。这个可以通过扩展 Interceptor 来解决。 Interceptor 用于在 Source 投递事件给 Channel 前的一个拦截处理,一般都是用来对事件丰富 header 信息。强烈不建议在 Source 中直接处理,实现一个 Interceptor 可以满足其他 Source 类似需求的复用性。

五、性能调优

Flume 实例进行性能调优最常见的配置是 事务batchChannelCapacity

  • 事务 batch 指的是合理设置 batch 配置,可以明显的改善实例的吞吐量。上面已经讲到 Source 对 Channel 进行 put 或者 Sink 对 Channel 进行 take 都是通过开启事务来操作,所以调大两个组件的 batch 配置可以降低 cpu 消耗,减少网络 IO 等待等。

  • Channel 的 capacity 大小直接影响着 source 和 sink 两端的事件生产和消费。capacity 越大,吞吐量越好,但是其他因素制约着不能设置的很大。比如 MemoryChannel ,直接表现着对内存的消耗,以及进程异常退出所丢失的事件数量。不同的 Channel 需要不同的考虑,最终 trade-off 是难免的。

六、总结和展望

Flume 是一个非常稳定的服务,这一点在我们生产环境中得到充分验证。

同时它的模型设计也非常清晰易懂,每一种组件类型都有很多现成的实现,同时特考虑到各个扩展点,所以我们很容易找到或者定制化我们所需要的数据管道的解决方案。

随着用户越来越多,需要有一个统一的平台来集中管理所有的 Flume 实例。 有以下几点好处:

  • 降低用户对 Flume 的成本。尽可能在不太了解 Flume 的情况下就可以享受到它带来的价值。

  • 有效对机器的资源进行合理协调使用。

  • 完善的监控让 FLume 运行的更加稳定可靠。

当然这一步我们也才刚启动,希望它未来的价值变得越来越大。

-The End-

号外:为读者持续几份最新教程,覆盖了 Spring Boot、Spring Cloud、微服务架构等。



热门推荐文章:




长按二维码,扫扫关注哦

关注即可得 Spring Boot Cloud、微服务等干货


技术圈子总是情,点个“好看”行不行

↓↓↓↓

以上是关于有赞大数据:Flume 数据采集服务最佳实践的主要内容,如果未能解决你的问题,请参考以下文章

有赞数据仓库元数据系统实践

有赞大裁员,竟把人员优化写进 OKR

有赞大裁员:裁员会超过1500人,加盟4年半的百度副总裁也已离职

有赞TCP网络编程最佳实践 | 极客分享第 34 期

HBase 读流程解析与优化的最佳实践

最佳实践有赞crash平台符号化实践