懂你的推荐算法,你懂的

Posted 给产品经理讲技术

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了懂你的推荐算法,你懂的相关的知识,希望对你有一定的参考价值。

作为一个喜欢思考人生的美男子,我时常感慨,现在这个年代,人们上网获取信息的成本真的好低。智能手机,人手一台,打开3G就能上网,百度一搜,什么都有。当然百度上搜出来的大多数可能并不是你想要的,但这并不妨碍上面的论点成立。也正是因为成本太低,人们反而不愿意主动取获取信息,于是各种各样的推荐系统有了大展身手的机会。

推荐在生活中是一个再平常不过的事情,你失业了,有人会给你推荐工作,你失恋了,有人会给你推荐姑娘。但是在我们这个机器远没有人类聪明的时代,这些事情要是交给机器去做,你就得设计出一套机器能理解的算法出来,这就是所谓的推荐算法。大家看到算法两个字不要慌,以为我又要搬一个大东西出来吓唬人。你可以把算法看做现实生活中的办事流程,它规定了你第一步干什么,第二步干什么,只要你按它说的做,就可以把事情办好。举个例子,你现在要做一个电影推荐APP,我们来看下整个过程是怎样的。

在推荐算法中,我们第一步要有一大堆要推荐的东西。也就是说,你的电影首先要足够多,才能满足不同用户的需求。算法再精准,最后发现推导出来的结果,在你的数据库中并没有,就悲剧了。第二步是要有用户的行为数据。这个也是越多越详细越好。这时候你要把看了哪部电影,看完没有,评价怎么样悄悄的记下来,上传到后台服务器。经过长期的积累,这些数据将为你以后的精准推荐奠定基础。

有了上面的数据基础,我们就可以进入正题了。推荐算法有不少,我们今天介绍一种最基本的叫做协同过滤算法。它的核心思想是物以类聚,人以群分。具体可以分为基于用户的协同过滤算法和基于物品的协同过滤算法。我一直觉得专业领域起这种高大上的名字,是用来过滤智商的,因为很多人看到这里就不打算往下看了,哈哈。


第二种是基于物品的协同过滤。基本思想是假设甲乙是相似的物品,那么喜欢甲的人,很可能也喜欢乙。还是上面的例子,现在假设用户E喜欢《栀子花开》和《小时代》,那我们可以推导出,喜欢《栀子花开》的用户(B和E)都喜欢《小时代》,那基本可以确定两部电影是相似的,下回来个用户F,他喜欢《栀子花开》,那我顺便就把《小时代》推荐给他,他可能比较容易接受。

大家可能要问,我的APP第一天上线,没有这些所谓的用户行为数据怎么推荐啊。这就是推荐算法面临的冷启动问题。这时候可以用基于内容的算法了。你可以事先把所有电影归个类,战争片归到一起,喜剧片归到一起,动画片归到一起。用户H看了一部喜剧片,你就把所有喜剧片推荐给他。显而易见,这种算法简单粗暴,当然命中率也最低。


(如需转载,请联系作者)


以上是关于懂你的推荐算法,你懂的的主要内容,如果未能解决你的问题,请参考以下文章

明晚直播丨比女朋友还懂你的推荐系统,不了解一下吗?

扒一扒头条系的推荐系统 | 整理

动手搭建个比女朋友还懂你的 音乐推荐系统

带你动手搭建个 比女朋友还懂你的 音乐推荐系统

php 经典的算法题你懂的

GTC20 邀请函:比你更懂你?在“推荐系统”分论坛邂逅懂你的Ta