标普100案例分析 —— 带着Python玩金融(5)
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了标普100案例分析 —— 带着Python玩金融(5)相关的知识,希望对你有一定的参考价值。
参考技术A 本文将带着你使用Python对标普100数据进行简单的分析,你会学到:标准普尔100指数 用来衡量大公司的股票表现,它由多个行业的100家主要公司构成。2017年标普100在各行业的比例如下图所示。
本文将要分析的数据如下表所示,它由四列数据构成,分别是公司名(Name),行业(Sector),股价(Price)和每股盈余(EPS)。
我们将这四列数据分别存储在四个Python列表中。
先来用切片的方法观察下数据。比如查看前四家公司的名称。
或者输出最后一家公司的所有信息。
市盈率 (Price to Earnings ratio),也称股价收益比率,由股价除以每年度每股盈余(EPS)得到,它是用来衡量股价水平是否合理的指标之一。
为了方便计算市盈率,我们首先将数据从Python列表类型转换为NumPy数组。
NumPy数组的优势是它可以直接对数组进行运算,而这一点Python列表是做不到的。比如计算市盈率 pe ,我们可以直接将数组 prices 除以数组 earnings 。
接下来我们就具体行业来进行分析,比如对于IT行业,我们首先需要筛选出哪些公司属于这一行业。
用同样的方法,筛选出必需消费品行业的公司和市盈率。
筛选出IT和必需消费品行业的数据后,我们来计算这两个行业市盈率的均值和标准差。
首先用散点图来观察这两个行业中每一家公司的市盈率。这里使用Python中常用的绘图工具包 matplotlib 。
我们注意到,上图的右上角有一IT公司的市盈率特别高。若某股票的市盈率高于同类股票,往往意味着该股有较高的增长预期。所以让我们进一步来观察IT行业的市盈率分布,在这里直方图可以用来查看数据的分布情况。
现在可以更直观的看到在直方图的右侧有一离群值,它具有很高的市盈率。我们可以使用布尔索引找到这家市盈率很高的公司。
注:本文是 DataCamp 课程 Intro to Python for Finance 的学习笔记。
python金融大数据分析简单吗
参考技术A 近来,Python无疑是金融业的重要策略性技术平台之一。到2018年底,这已经不再是个问题:全世界的金融机构现在都尽最大努力利用Python及其强大的数据分析、可视化和机器学习程序库生态系统。在金融领域之外,Python还常常成为编程入门课程选择的语言,例如计算机科学课程项目。除了容易理解的语法和多重范型方法之外,形成这一局面的主要原因之一是,Python已经成为人工智能(AI)、机器学习(ML)和深度学习(DL)领域的“头等公民”。这些领域的许多流行的软件包和程序库都直接用Python(如ML所用的scikit-learn)编写,或者用Python包装器(例如DL所用的TensorFlow)。
要学会数据分析 还是需要先学会python基础。
希望可以帮到你
以上是关于标普100案例分析 —— 带着Python玩金融(5)的主要内容,如果未能解决你的问题,请参考以下文章
Pandas数据处理100例目录Python数据分析玩转Excel表格数据
道琼斯标普500纳斯达克100指数:一季度财报强劲,三大股指技术面却现回调信号!
道琼斯标普500纳斯达克100指数:一季度财报强劲,三大股指技术面却现回调信号!