大数据/数据挖掘/推荐系统/机器学习相关资源
Posted 定位研究
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了大数据/数据挖掘/推荐系统/机器学习相关资源相关的知识,希望对你有一定的参考价值。
Share my personal resources,本文贡献者为Zhe Yu
书籍
机器学习经典书籍小结 http://www.cnblogs.com/snake-hand/archive/2013/06/10/3131145.html
机器学习&深度学习经典资料汇总 http://www.thebigdata.cn/JiShuBoKe/13299.html
视频
浙大数据挖掘系列 http://v.youku.com/v_show/id_XNTgzNDYzMjg=.html?f=2740765
用Python做科学计算 http://www.tudou.com/listplay/fLDkg5e1pYM.html
R语言视频 http://pan.baidu.com/s/1koSpZ
Hadoop视频 http://pan.baidu.com/s/1b1xYd
42区 . 技术 . 创业 . 第二讲 http://v.youku.com/v_show/id_XMzAyMDYxODUy.html
加州理工学院公开课:机器学习与数据挖掘 http://v.163.com/special/opencourse/learningfromdata.html
QQ群
机器学习&模式识别 246159753
数据挖掘机器学习 236347059
推荐系统 274750470
36大数据 80958753
Github
推荐系统
推荐系统开源软件列表汇总和评点 http://in.sdo.com/?p=1707
Mrec(Python) https://github.com/mendeley/mrec
Crab(Python) https://github.com/muricoca/crab
Python-recsys(Python) https://github.com/ocelma/python-recsys
CofiRank(C++) https://github.com/markusweimer/cofirank
GraphLab(C++) https://github.com/graphlab-code/graphlab
EasyRec(Java) https://github.com/hernad/easyrec
Lenskit(Java) https://github.com/grouplens/lenskit
Mahout(Java) https://github.com/apache/mahout
Recommendable(Ruby) https://github.com/davidcelis/recommendable
库
NLTK https://github.com/nltk/nltk
Pattern https://github.com/clips/pattern
Pyrallel https://github.com/pydata/pyrallel
Theano https://github.com/Theano/Theano
Pylearn2 https://github.com/lisa-lab/pylearn2
TextBlob https://github.com/sloria/TextBlob
MBSP https://github.com/clips/MBSP
Gensim https://github.com/piskvorky/gensim
Langid.py https://github.com/saffsd/langid.py
Jieba https://github.com/fxsjy/jieba
xTAS https://github.com/NLeSC/xtas
NumPy https://github.com/numpy/numpy
SciPy https://github.com/scipy/scipy
Matplotlib https://github.com/matplotlib/matplotlib
scikit-learn https://github.com/scikit-learn/scikit-learn
Pandas https://github.com/pydata/pandas
MDP http://mdp-toolkit.sourceforge.net/
PyBrain https://github.com/pybrain/pybrain
PyML http://pyml.sourceforge.net/
Milk https://github.com/luispedro/milk
PyMVPA https://github.com/PyMVPA/PyMVPA
博客
周涛 http://blog.sciencenet.cn/home.php?mod=space&uid=3075
Greg Linden http://glinden.blogspot.com/
Marcel Caraciolo http://aimotion.blogspot.com/
RsysChina http://weibo.com/p/1005051686952981
推荐系统人人小站 http://zhan.renren.com/recommendersystem
阿稳 http://www.wentrue.net
梁斌 http://weibo.com/pennyliang
刁瑞 http://diaorui.net
guwendong http://www.guwendong.com
xlvector http://xlvector.net
懒惰啊我 http://www.cnblogs.com/flclain/
free mind http://blog.pluskid.org/
lovebingkuai http://lovebingkuai.diandian.com/
LeftNotEasy http://www.cnblogs.com/LeftNotEasy
LSRS 2013 http://graphlab.org/lsrs2013/program/
Google小组 https://groups.google.com/forum/#!forum/resys
Journal of Machine Learning Research http://jmlr.org/
在线的机器学习社区 http://www.52ml.net/16336.html
清华大学信息检索组 http://www.thuir.cn
我爱自然语言处理 http://www.52nlp.cn/
36大数据 http://www.36dsj.com/
文章
心中永远的正能量 http://blog.csdn.net/yunlong34574
机器学习最佳入门学习资料汇总 http://article.yeeyan.org/view/22139/410514
Books for Machine Learning with R http://www.52ml.net/16312.html
是什么阻碍了你的机器学习目标? http://www.52ml.net/16436.htm
推荐系统初探 http://yongfeng.me/attach/rs-survey-zhang-slices.pdf
推荐系统中协同过滤算法若干问题的研究 http://pan.baidu.com/s/1bnjDBYZ
Netflix 推荐系统:第一部分 http://blog.csdn.net/bornhe/article/details/8222450
Netflix 推荐系统:第二部分 http://blog.csdn.net/bornhe/article/details/8222497
探索推荐引擎内部的秘密 http://www.ibm.com/developerworks/cn/web/1103_zhaoct_recommstudy1/index.html
推荐系统resys小组线下活动见闻2009-08-22 http://www.tuicool.com/articles/vUvQVn
Recommendation Engines Seminar Paper, Thomas Hess, 2009: 推荐引擎的总结性文章http://www.slideshare.net/antiraum/recommender-engines-seminar-paper
Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions, Adomavicius, G.; Tuzhilin, A., 2005 http://dl.acm.org/citation.cfm?id=1070751
A Taxonomy of RecommenderAgents on the Internet, Montaner, M.; Lopez, B.; de la Rosa, J. L., 2003http://www.springerlink.com/index/KK844421T5466K35.pdf
A Course in Machine Learning http://ciml.info/
基于mahout构建社会化推荐引擎 http://www.doc88.com/p-745821989892.html
个性化推荐技术漫谈 http://blog.csdn.net/java060515/archive/2007/04/19/1570243.aspx
Design of Recommender System http://www.slideshare.net/rashmi/design-of-recommender-systems
How to build a recommender system http://www.slideshare.net/blueace/how-to-build-a-recommender-system-presentation
推荐系统架构小结 http://blog.csdn.net/idonot/article/details/7996733
System Architectures for Personalization and Recommendation http://techblog.netflix.com/2013/03/system-architectures-for.html
The Netflix Tech Blog http://techblog.netflix.com/
百分点推荐引擎——从需求到架构http://www.infoq.com/cn/articles/baifendian-recommendation-engine
推荐系统 在InfoQ上的内容 http://www.infoq.com/cn/recommend
推荐系统实时化的实践和思考 http://www.infoq.com/cn/presentations/recommended-system-real-time-practice-thinking
质量保证的推荐实践 http://www.infoq.com/cn/news/2013/10/testing-practice/
推荐系统的工程挑战 http://www.infoq.com/cn/presentations/Recommend-system-engineering
社会化推荐在人人网的应用 http://www.infoq.com/cn/articles/zyy-social-recommendation-in-renren/
利用20%时间开发推荐引擎 http://www.infoq.com/cn/presentations/twenty-percent-time-to-develop-recommendation-engine
使用Hadoop和 Mahout实现推荐引擎 http://www.jdon.com/44747
SVD 简介 http://www.cnblogs.com/FengYan/archive/2012/05/06/2480664.html
Netflix推荐系统:从评分预测到消费者法则 http://blog.csdn.net/lzt1983/article/details/7696578
论文
《推荐系统实战》引用
P1
A Guide to Recommender System P4
Cross Selling P6
课程:Data Mining and E-Business: The Social Data Revolution P7)
An Introduction to Search Engines and Web Navigation p7
p8
p9
(The Youtube video recommendation system) p9
(PPT: Music Recommendation and Discovery) p12
P13
(Digg Recommendation Engine Updates) P16
(The Learning Behind Gmail Priority Inbox)p17
(Accurate is not always good: How Accuracy Metrics have hurt Recommender Systems) P20
(Don’t Look Stupid: Avoiding Pitfalls when Recommending Research Papers)P23
(Major componets of the gravity recommender system) P25
(What is a Good Recomendation Algorithm?) P26
(Evaluation Recommendation Systems) P27
(Music Recommendation and Discovery in the Long Tail) P29
(Internation Workshop on Novelty and Diversity in Recommender Systems) p29
(Auralist: Introducing Serendipity into Music Recommendation ) P30
(Metrics for evaluating the serendipity of recommendation lists) P30
(The effects of transparency on trust in and acceptance of a content-based art recommender) P31
(Trust-aware recommender systems) P31
(Tutorial on robutness of recommender system) P32
(Five Stars Dominate Ratings) P37
(Book-Crossing Dataset) P38
(Lastfm Dataset) P39
浅谈网络世界的Power Law现象 P39
(MovieLens Dataset) P42
(Empirical Analysis of Predictive Algorithms for Collaborative Filtering) P49
(Digg Vedio) P50
(Amazon.com Recommendations Item-to-Item Collaborative Filtering) P59
(Greg Linden Blog) P63
(One-Class Collaborative Filtering) P67
(Stochastic Gradient Descent) P68
(Latent Factor Models for Web Recommender Systems) P70
(Bipatite Graph) P73
(Random-Walk Computation of Similarities between Nodes of a Graph with Application to Collaborative Recommendation) P74
(Topic Sensitive Pagerank) P74
(FAST ALGORITHMS FOR SPARSE MATRIX INVERSE COMPUTATIONS) P77
(LIFESTYLE FINDER: Intelligent User Profiling Using Large-Scale Demographic Data) P80
( adaptive bootstrapping of recommender systems using decision trees) P87
(Vector Space Model) P90
(冷启动问题的比赛) P92
(Latent Dirichlet Allocation) P92
(Kullback–Leibler divergence) P93
(About The Music Genome Project) P94
(Pandora Music Genome Project Attributes) P94
(Jinni Movie Genome) P94
(Tagsplanations: Explaining Recommendations Using Tags) P96
(Tag Wikipedia) P96
(Nurturing Tagging Communities) P100
(Why We Tag: Motivations for Annotation in Mobile and Online Media ) P100
(Delicious Dataset) P101
(Finding Advertising Keywords on Web Pages) P118
(基于标签的推荐系统比赛) P119
(Tag recommendations based on tensor dimensionality reduction)P119
(latent dirichlet allocation for tag recommendation) P119
(Folkrank: A ranking algorithm for folksonomies) P119
(Tagommenders: Connecting Users to Items through Tags) P119
(The Quest for Quality Tags) P120
(Challenge on Context-aware Movie Recommendation) P123
(The Lifespan of a link) P125
(Temporal Diversity in Recommender Systems) P129
(Evaluating Collaborative Filtering Over Time) P129
(Hotpot) P139
(Google Launches Hotpot, A Recommendation Engine for Places) P139
(geolocated recommendations) P140
(A Peek Into Netflix Queues) P141
(Distance Browsing in Spatial Databases1) P142
(Efficient Evaluation of k-Range Nearest Neighbor Queries in Road Networks) P143
(Global Advertising: Consumers Trust Real Friends and Virtual Strangers the Most) P144
(Suggesting Friends Using the Implicit Social Graph) P145
(Friends & Frenemies: Why We Add and Remove Facebook Friends) P147
(Stanford Large Network Dataset Collection) P149
(Workshop on Context-awareness in Retrieval and Recommendation) P151
(Factorization vs. Regularization: Fusing Heterogeneous Social Relationships in Top-N Recommendation) P153
(Twitter, an Evolving Architecture) P154
(Recommendations in taste related domains) P155
(Comparing Recommendations Made by Online Systems and Friends) P155
(EdgeRank: The Secret Sauce That Makes Facebook’s News Feed Tick) P157
(Speak Little and Well: Recommending Conversations in Online Social Streams) P158
(Learn more about “People You May Know”) P160
(“Make New Friends, but Keep the Old” – Recommending People on Social Networking Sites) P164
(SoRec: Social Recommendation Using Probabilistic Matrix) P165
(A Dynamic Bayesian Network Click Model for Web Search Ranking) P177
(Online Learning from Click Data for Sponsored Search) P177
(Contextual Advertising by Combining Relevance with Click Feedback) P177
(Hulu 推荐系统架构) P178
(MyMedia Project) P178
(item-based collaborative filtering recommendation algorithms) P185
(Learning Collaborative Information Filters) P186
(Simon Funk Blog:Funk SVD) P187
(Factor in the Neighbors: Scalable and Accurate Collaborative Filtering) P190
(Time-dependent Models in Collaborative Filtering based Recommender System) P193
(Collaborative filtering with temporal dynamics) P193
(Least Squares Wikipedia) P195
(Improving regularized singular value decomposition for collaborative filtering) P195
(Factorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model) P195
【CIKM 2012 Best Stu Paper】Incorporating Occupancy into Frequent Pattern Mini.pdf
【CIKM 2012 poster】A Latent Pairwise Preference Learning Approach for Recomme.pdf
【CIKM 2012 poster】An Effective Category Classification Method Based on a Lan.pdf
【CIKM 2012 poster】Learning to Rank for Hybrid Recommendation.pdf
【CIKM 2012 poster】Learning to Recommend with Social Relation Ensemble.pdf
【CIKM 2012 poster】Maximizing Revenue from Strategic Recommendations under De.pdf
【CIKM 2012 poster】On Using Category Experts for Improving the Performance an.pdf
【CIKM 2012 poster】Relation Regularized Subspace Recommending for Related Sci.pdf
【CIKM 2012 poster】Top-N Recommendation through Belief Propagation.pdf
【CIKM 2012 poster】Twitter Hyperlink Recommendation with User-Tweet-Hyperlink.pdf
【CIKM 2012 short】Automatic Query Expansion Based on Tag Recommendation.pdf
【CIKM 2012 short】Graph-Based Workflow Recommendation- On Improving Business .pdf
【CIKM 2012 short】Location-Sensitive Resources Recommendation in Social Taggi.pdf
【CIKM 2012 short】More Than Relevance- High Utility Query Recommendation By M.pdf
【CIKM 2012 short】PathRank- A Novel Node Ranking Measure on a Heterogeneous G.pdf
【CIKM 2012 short】PRemiSE- Personalized News Recommendation via Implicit Soci.pdf
【CIKM 2012 short】Query Recommendation for Children.pdf
【CIKM 2012 short】The Early-Adopter Graph and its Application to Web-Page Rec.pdf
【CIKM 2012 short】Time-aware Topic Recommendation Based on Micro-blogs.pdf
【CIKM 2012 short】Using Program Synthesis for Social Recommendations.pdf
【CIKM 2012】A Decentralized Recommender System for Effective Web Credibility .pdf
【CIKM 2012】A Generalized Framework for Reciprocal Recommender Systems.pdf
【CIKM 2012】Dynamic Covering for Recommendation Systems.pdf
【CIKM 2012】Efficient Retrieval of Recommendations in a Matrix Factorization .pdf
【CIKM 2012】Exploring Personal Impact for Group Recommendation.pdf
【CIKM 2012】LogUCB- An Explore-Exploit Algorithm For Comments Recommendation.pdf
【CIKM 2012】Metaphor- A System for Related Search Recommendations.pdf
【CIKM 2012】Social Contextual Recommendation.pdf
【CIKM 2012】Social Recommendation Across Multiple Relational Domains.pdf
【COMMUNICATIONS OF THE ACM】Recommender Systems.pdf
【ICDM 2012 short___】Multiplicative Algorithms for Constrained Non-negative M.pdf
【ICDM 2012 short】Collaborative Filtering with Aspect-based Opinion Mining- A.pdf
【ICDM 2012 short】Learning Heterogeneous Similarity Measures for Hybrid-Recom.pdf
【ICDM 2012 short】Mining Personal Context-Aware Preferences for Mobile Users.pdf
【ICDM 2012】Link Prediction and Recommendation across Heterogenous Social Networks.pdf
【IEEE Computer Society 2009】Matrix factorization techniques for recommender .pdf
【IEEE Consumer Communications and Networking Conference 2006】FilmTrust movie.pdf
【IEEE Trans on Audio, Speech and Laguage Processing 2010】Personalized music .pdf
【IEEE Transactions on Knowledge and Data Engineering 2005】Toward the next ge.pdf
【INFOCOM 2011】Bayesian-inference Based Recommendation in Online Social Network.pdf
【KDD 2009】Learning optimal ranking with tensor factorization for tag recomme.pdf
【SIGIR 2009】Learning to Recommend with Social Trust Ensemble.pdf
【SIGIR 2012】Adaptive Diversification of Recommendation Results via Latent Fa.pdf
【SIGIR 2012】Collaborative Personalized Tweet Recommendation.pdf
【SIGIR 2012】Dual Role Model for Question Recommendation in Community Questio.pdf
【SIGIR 2012】Exploring Social Influence for Recommendation – A Generative Mod.pdf
【SIGIR 2012】Increasing Temporal Diversity with Purchase Intervals.pdf
【SIGIR 2012】Learning to Rank Social Update Streams.pdf
【SIGIR 2012】Personalized Click Shaping through Lagrangian Duality for Online.pdf
【SIGIR 2012】Predicting the Ratings of Multimedia Items for Making Personaliz.pdf
【SIGIR 2012】TFMAP-Optimizing MAP for Top-N Context-aware Recommendation.pdf
【SIGIR 2012】What Reviews are Satisfactory- Novel Features for Automatic Help.pdf
【SIGKDD 2012】 A Semi-Supervised Hybrid Shilling Attack Detector for Trustwor.pdf
【SIGKDD 2012】 RecMax- Exploiting Recommender Systems for Fun and Profit.pdf
【SIGKDD 2012】Circle-based Recommendation in Online Social Networks.pdf
【SIGKDD 2012】Cross-domain Collaboration Recommendation.pdf
【SIGKDD 2012】Finding Trending Local Topics in Search Queries for Personaliza.pdf
【SIGKDD 2012】GetJar Mobile Application Recommendations with Very Sparse Datasets.pdf
【SIGKDD 2012】Incorporating Heterogenous Information for Personalized Tag Rec.pdf
【SIGKDD 2012】Learning Personal+Social Latent Factor Model for Social Recomme.pdf
【VLDB 2012】Challenging the Long Tail Recommendation.pdf
【VLDB 2012】Supercharging Recommender Systems using Taxonomies for Learning U.pdf
【WWW 2012 Best paper】Build Your Own Music Recommender by Modeling Internet R.pdf
【WWW 2013】A Personalized Recommender System Based on User’s Informatio.pdf
【WWW 2013】Diversified Recommendation on Graphs-Pitfalls, Measures, and Algorithms.pdf
【WWW 2013】Do Social Explanations Work-Studying and Modeling the Effects of S.pdf
【WWW 2013】Generation of Coalition Structures to Provide Proper Groups’.pdf
【WWW 2013】Learning to Recommend with Multi-Faceted Trust in Social Networks.pdf
【WWW 2013】Multi-Label Learning with Millions of Labels-Recommending Advertis.pdf
【WWW 2013】Personalized Recommendation via Cross-Domain Triadic Factorization.pdf
【WWW 2013】Profile Deversity in Search and Recommendation.pdf
【WWW 2013】Real-Time Recommendation of Deverse Related Articles.pdf
【WWW 2013】Recommendation for Online Social Feeds by Exploiting User Response.pdf
【WWW 2013】Recommending Collaborators Using Keywords.pdf
【WWW 2013】Signal-Based User Recommendation on Twitter.pdf
【WWW 2013】SoCo- A Social Network Aided Context-Aware Recommender System.pdf
【WWW 2013】Tailored News in the Palm of Your HAND-A Multi-Perspective Transpa.pdf
【WWW 2013】TopRec-Domain-Specific Recommendation through Community Topic Mini.pdf
【WWW 2013】User’s Satisfaction in Recommendation Systems for Groups-an .pdf
【WWW 2013】Using Link Semantics to Recommend Collaborations in Academic Socia.pdf
【WWW 2013】Whom to Mention-Expand the Diffusion of Tweets by @ Recommendation.pdf
Recommender+Systems+Handbook.pdf
tutorial.pdf
各个领域的推荐系统
图书
Amazon
豆瓣读书
当当网
新闻
Google News
Genieo
Getprismatic http://getprismatic.com/
电影
Netflix
Jinni
MovieLens
Rotten Tomatoes
Flixster
MTime
音乐
豆瓣电台
Lastfm
Pandora
Mufin
Lala
EMusic
Ping
虾米电台
Jing.FM
视频
Youtube
Hulu
Clciker
文章
CiteULike
Google Reader
StumbleUpon
旅游
Wanderfly
TripAdvisor
社会网络
Facebook
Twitter
综合
Amazon
GetGlue
Strands
Hunch
欢迎贡献资源~~待续
来自36大数据(36dsj.com)
以上是关于大数据/数据挖掘/推荐系统/机器学习相关资源的主要内容,如果未能解决你的问题,请参考以下文章
资源 | 主要推荐系统算法总结及Youtube深度学习推荐算法实例概括