机器学习初学者手抄本:数学基础机器学习经典算法统计学习方法等

Posted 机器学习初学者

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了机器学习初学者手抄本:数学基础机器学习经典算法统计学习方法等相关的知识,希望对你有一定的参考价值。

机器学习手册分为三个部分,数学基础、机器学习经典算法、统计学习方法。建议有时间的同学可以这三个部分按照顺序学习,时间少的同学,我建议直接看机器学习经典算法,遇到问题查一下数学基础,也可以一边看机器学习经典算法,一边看统计学习方法,查漏补缺。

机器学习手册

一、数学基础

1.高等数学

推荐下我考研和考博时候的数学笔记,我把机器学习的部分,提炼出来,几乎涵盖了所有机器学习所需要的高等数学公式:我做成了在线阅读版本。

2.概率论

  • 首选

    推荐斯坦福大学 CS229 机器学习课程的基础材料的概率论部分,这个由我翻译,是斯坦福各类人工智能课程的基础材料,针对机器学习进行了优化,可以说是经典材料。(原始文件下载[2])

  • 备选

    推荐下我考研和考博时候的数学笔记,我把机器学习的部分,提炼出来,几乎涵盖了所有机器学习所需要的线性代数公式:

3.线性代数

  • 首选

    推荐斯坦福大学 CS229 机器学习课程的基础材料的线性代数部分,这个由我翻译,是斯坦福各类人工智能课程的基础材料,针对机器学习进行了优化,可以说是经典材料。(原始文件下载[3]

  • 备选

    推荐下我考研和考博时候的数学笔记,我把机器学习的部分,提炼出来,几乎涵盖了所有机器学习所需要的线性代数公式:

Github:

https://github.com/fengdu78/Data-Science-Notes/tree/master/0.math

二、机器学习经典算法

机器学习的经典算法主要是吴恩达老师的机器学习课程[4]的精选部分,并增加了决策树部分。如何在最短时间掌握机器学习的经典算法?我推荐把算法精华部分进行学习,这样学习进度会快一点。

点击目录在线阅读)

第六部分:决策树

Github:

https://github.com/fengdu78/Coursera-ML-AndrewNg-Notes

三、《统计学习方法》

李航老师的《统计学习方法》[5]第一版于 2012 年出版,讲述了统计机器学习方法,主要是一些常用的监督学习方法。第一版和第二版前面十二章相同,第二版多了无监督学习的内容(比第一版多了十二章以后的部分),由此本书涵盖了传统统计机器学习方法的主要内容。(点击目录在线阅读)

目录


第15章




    附录A  梯度下降法

    附录B  牛顿法和拟牛顿法

    附录C  拉格朗日对偶性

    附录D  矩阵的基本子空间

    附录E  KL散度的定义和狄利克雷分布的性质


建议学习方法

使用微信收藏本文,学习的时候,从本文点击相关章节的链接进行学习。

文章里也是完整代码,如果需要下载代码学习,请访问Github:

https://github.com/fengdu78/lihang-code

总结

本文将机器学习的精华部分做成了手册,打开微信就能学习,适合平时时间少的朋友学习机器学习,可以在通勤的时候在手机上学习,建议收藏本文慢慢学习。

参考资料

[1] 黄海广: https://github.com/fengdu78
[2] 概率论原始文件下载: http://cs229.stanford.edu/summer2019/cs229-prob.pdf
[3] 线性代数原始文件下载: http://cs229.stanford.edu/summer2019/cs229-linalg.pdf
[4] 机器学习课程: https://www.coursera.org/course/ml
[5] 《统计学习方法》: https://baike.baidu.com/item/统计学习方法/10430179



    
      
      
    

往期精彩回顾






获取一折本站知识星球优惠券,复制链接直接打开:

https://t.zsxq.com/662nyZF

本站qq群1003271085。

加入微信群请扫码进群(如果是博士或者准备读博士请说明):

以上是关于机器学习初学者手抄本:数学基础机器学习经典算法统计学习方法等的主要内容,如果未能解决你的问题,请参考以下文章

包邮送书啦|《机器学习与深度学习算法基础》

spark MLLib的基础统计部分学习

机器学习---基础----图解十大经典机器学习算法入门

干货 基础机器学习算法

堪称经典,一个非常适合初学者的机器学习实战案例

经典算法