今日论文|谷歌:差分私有机器学习&谷歌:用模拟用户测量推荐系统性能&队列学习&MORE
Posted AI日读
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了今日论文|谷歌:差分私有机器学习&谷歌:用模拟用户测量推荐系统性能&队列学习&MORE相关的知识,希望对你有一定的参考价值。
标题文章序号:[26] & [36] & [34]
计算机视觉
Computer Vision
[1]
Quantum Cognitively Motivated Decision Fusion for Video Sentiment Analysis
Dimitris Gkoumas, Qiuchi Li, Shahram Dehdashti, Massimo Melucci, Yijun Yu, Dawei Song
摘 要:
原 文:http://arxiv.org/pdf/2101.04406v1
[2]
Superpixel-based Refinement for Object Proposal Generation
Christian Wilms, Simone Frintrop
摘 要:
原 文:http://arxiv.org/pdf/2101.04574v1
[3]
PvDeConv: Point-Voxel Deconvolution for Autoencoding CAD Construction in 3D
Kseniya Cherenkova, Djamila Aouada, Gleb Gusev
摘 要:
原 文:http://arxiv.org/pdf/2101.04493v1
[4]
TrackMPNN: A Message Passing Graph Neural Architecture for Multi-Object Tracking
Akshay Rangesh, Pranav Maheshwari, Mez Gebre, Siddhesh Mhatre, Vahid Ramezani, Mohan M. Trivedi
摘 要:
原 文:http://arxiv.org/pdf/2101.04206v1
[5]
Automated 3D solid reconstruction from 2D CAD using OpenCV
Ajay Bangalore Harish, Abhishek Rajendra Prasad
摘 要:
原 文:http://arxiv.org/pdf/2101.04248v1
[6]
3D-ANAS: 3D Asymmetric Neural Architecture Search for Fast Hyperspectral Image Classification
Haokui Zhang, Chengrong Gong, Yunpeng Bai, Zongwen Bai, Ying Li
摘 要:
原 文:http://arxiv.org/pdf/2101.04287v1
[7]
Random Transformation of Image Brightness for Adversarial Attack
Bo Yang, Kaiyong Xu, Hengjun Wang, Hengwei Zhang
摘 要:
原 文:http://arxiv.org/pdf/2101.04321v1
[8]
Take More Positives: A Contrastive Learning Framework for Unsupervised Person Re-Identification
Xuanyu He, Wei Zhang, Ran Song, Xiangyuan Lan
摘 要:
原 文:http://arxiv.org/pdf/2101.04340v1
[9]
UFA-FUSE: A novel deep supervised and hybrid model for multi-focus image fusion
Yongsheng Zang, Dongming Zhou, Changcheng Wang, Rencan Nie, Yanbu Guo
摘 要:
原 文:http://arxiv.org/pdf/2101.04506v1
[10]
Fine-grained Semantic Constraint in Image Synthesis
Pengyang Li, Donghui Wang
摘 要:
原 文:http://arxiv.org/pdf/2101.04558v1
[11]
Context Matters: Self-Attention for Sign Language Recognition
Fares Ben Slimane, Mohamed Bouguessa
摘 要:
原 文:http://arxiv.org/pdf/2101.04632v1
自然语言处理
Natural Language Processing
[12]
A character representation enhanced on-device Intent Classification
Sudeep Deepak Shivnikar, Himanshu Arora, Harichandana B S S
摘 要:
原 文:http://arxiv.org/pdf/2101.04456v1
[13]
BERT-GT: Cross-sentence n-ary relation extraction with BERT and Graph Transformer
Po-Ting Lai, Zhiyong Lu
摘 要:
原 文:http://arxiv.org/pdf/2101.04158v1
[14]
Text analysis in financial disclosures
Sridhar Ravula
摘 要:
原 文:http://arxiv.org/pdf/2101.04480v1
[15]
Of Non-Linearity and Commutativity in BERT
Sumu Zhao, Damian Pascual, Gino Brunner, Roger Wattenhofer
摘 要:
原 文:http://arxiv.org/pdf/2101.04547v1
[16]
AI- and HPC-enabled Lead Generation for SARS-CoV-2: Models and Processes to Extract Druglike Molecules Contained in Natural Language Text
Zhi Hong, J. Gregory Pauloski, Logan Ward, Kyle Chard, Ben Blaiszik, Ian Foster
摘 要:
原 文:http://arxiv.org/pdf/2101.04617v1
[17]
Dimensions of Commonsense Knowledge
Filip Ilievski, Alessandro Oltramari, Kaixin Ma, Bin Zhang, Deborah L. McGuinness, Pedro Szekely
摘 要:
原 文:http://arxiv.org/pdf/2101.04640v1
数据集
Dataset
[18]
The Multimodal Driver Monitoring Database: A Naturalistic Corpus to Study Driver Attention
Sumit Jha, Mohamed F. Marzban, Tiancheng Hu, Mohamed H. Mahmoud, Naofal Al-Dhahir Carlos Busso
摘 要:
原 文:http://arxiv.org/pdf/2101.04639v1
方法论
Methodology
[19]
DBTagger: Multi-Task Learning for Keyword Mapping in NLIDBs Using Bi-Directional Recurrent Neural Networks
Arif Usta, Akifhan Karakayali, Özgür Ulusoy
摘 要:
原 文:http://arxiv.org/pdf/2101.04226v1
[20]
Solving Common-Payoff Games with Approximate Policy Iteration
Samuel Sokota, Edward Lockhart, Finbarr Timbers, Elnaz Davoodi, Ryan D'Orazio, Neil Burch, Martin Schmid, Michael Bowling, Marc Lanctot
摘 要:
原 文:http://arxiv.org/pdf/2101.04237v1
[21]
Learning Intuitive Physics with Multimodal Generative Models
Sahand Rezaei-Shoshtari, Francois Robert Hogan, Michael Jenkin, David Meger, Gregory Dudek
摘 要:
原 文:http://arxiv.org/pdf/2101.04454v1
[22]
From Tinkering to Engineering: Measurements in Tensorflow Playground
Henrik Hoeiness, Axel Harstad, Gerald Friedland
摘 要:
原 文:http://arxiv.org/pdf/2101.04141v1
[23]
On the Convergence of Deep Networks with Sample Quadratic Overparameterization
Asaf Noy, Yi Xu, Yonathan Aflalo, Rong Jin
摘 要:
原 文:http://arxiv.org/pdf/2101.04243v1
[24]
Estimating Galactic Distances From Images Using Self-supervised Representation Learning
Md Abul Hayat, Peter Harrington, George Stein, Zarija Lukić, Mustafa Mustafa
摘 要:
原 文:http://arxiv.org/pdf/2101.04293v1
[25]
Seed Stocking Via Multi-Task Learning
Yunhe Feng, Wenjun Zhou
摘 要:
原 文:http://arxiv.org/pdf/2101.04333v1
[26]
Adversary Instantiation: Lower Bounds for Differentially Private Machine Learning
Milad Nasr, Shuang Song, Abhradeep Thakurta, Nicolas Papernot, Nicholas Carlini
摘 要:
原 文:http://arxiv.org/pdf/2101.04535v1
[27]
An Early-Stopping Mechanism for DSCF Decoding of Polar Codes
Ilshat Sagitov, Pascal Giard
摘 要:
原 文:http://arxiv.org/pdf/2101.04586v1
[28]
Double-Adversarial Activation Anomaly Detection: Adversarial Autoencoders are Anomaly Generators
J.-P. Schulze, P. Sperl, K. Böttinger
摘 要:
原 文:http://arxiv.org/pdf/2101.04645v1
综述
Survey
[29]
A Brief Survey of Associations Between Meta-Learning and General AI
Huimin Peng
摘 要:
原 文:http://arxiv.org/pdf/2101.04283v1
[30]
A Survey of Privacy-Preserving Techniques for Encrypted Traffic Inspection over Network Middleboxes
Geong Sen Poh, Dinil Mon Divakaran, Hoon Wei Lim, Jianting Ning, Achintya Desai
摘 要:
原 文:http://arxiv.org/pdf/2101.04338v1
[31]
Hyperbolic Deep Neural Networks: A Survey
Wei Peng, Tuomas Varanka, Abdelrahman Mostafa, Henglin Shi, Guoying Zhao
摘 要:
原 文:http://arxiv.org/pdf/2101.04562v1
[32]
Surface Electromyography as a Natural Human-Machine Interface: A Review
Mingde Zheng, Michael Crouch, Michael S. Eggleston
摘 要:
原 文:http://arxiv.org/pdf/2101.04658v1
平台与工具
Platform & Tool
[33]
FaceX-Zoo: A PyTorh Toolbox for Face Recognition
Jun Wang, Yinglu Liu, Yibo Hu, Hailin Shi, Tao Mei
摘 要:
原 文:http://arxiv.org/pdf/2101.04407v1
强化学习
Reinforcement Learning
[34]
Queue-Learning: A Reinforcement Learning Approach for Providing Quality of Service
Majid Raeis, Ali Tizghadam, Alberto Leon-Garcia
摘 要:
原 文:http://arxiv.org/pdf/2101.04627v1
推荐系统
Recommendation System
[35]
Neural News Recommendation with Negative Feedback
Chuhan Wu, Fangzhao Wu, Yongfeng Huang, Xing Xie
摘 要:
原 文:http://arxiv.org/pdf/2101.04328v1
[36]
Measuring Recommender System Effects with Simulated Users
Sirui Yao, Yoni Halpern, Nithum Thain, Xuezhi Wang, Kang Lee, Flavien Prost, Ed H. Chi, Jilin Chen, Alex Beutel
摘 要:
原 文:http://arxiv.org/pdf/2101.04526v1
其他技术
Others
[37]
A Bayesian neural network predicts the dissolution of compact planetary systems
Miles Cranmer, Daniel Tamayo, Hanno Rein, Peter Battaglia, Samuel Hadden, Philip J. Armitage, Shirley Ho, David N. Spergel
摘 要:
原 文:http://arxiv.org/pdf/2101.04117v1
点个在看,再下论文~
(密码:6tvc)
以上是关于今日论文|谷歌:差分私有机器学习&谷歌:用模拟用户测量推荐系统性能&队列学习&MORE的主要内容,如果未能解决你的问题,请参考以下文章
除了谷歌的TensorFlow,这些开源机器学习项目也很值得收藏!
谷歌移动端深度学习框架 TensorFlow Lite 正式发布
ICML 2021奖项公布!谷歌大脑摘得桂冠,田渊栋陆昱成获荣誉提名!