深入分布式事务
Posted 架构师之巅
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了深入分布式事务相关的知识,希望对你有一定的参考价值。
什么是事务
百度百科中是这样解释事务的,指作为单个逻辑工作单元执行的一系列操作,要么完全地执行,要么完全地不执行。简单的说,事务就是并发控制的单位,是用户定义的一个操作序列。
事务的ACID
1.原子性(Atomicity)
原子性是指事务是一个不可再分割的工作单元,事务中的操作要么都发生,要么都不发生。可采用“A向B转账”这个例子来说明解释在DBMS中,默认情况下一条SQL就是一个单独事务,事务是自动提交的。只有显式的使用start transaction开启一个事务,才能将一个代码块放在事务中执行。
2.一致性(Consistent)
一致性是指在事务开始之前和事务结束以后,数据库的完整性约束没有被破坏。这是说数据库事务不能破坏关系数据的完整性以及业务逻辑上的一致性。
如A给B转账,不论转账的事务操作是否成功,其两者的存款总额不变(这是业务逻辑的一致性,至于数据库关系约束的完整性就更好理解了)。
保障机制(也从两方面着手):数据库层面会在一个事务执行之前和之后,数据会符合你设置的约束(唯一约束,外键约束,check约束等)和触发器设置;此外,数据库的内部数据结构(如 B 树索引或双向链表)都必须是正确的。业务的一致性一般由开发人员进行保证,亦可转移至数据库层面。
3. 隔离性 (Isolation)
多个事务并发访问时,事务之间是隔离的,一个事务不应该影响其它事务运行效果。
在并发环境中,当不同的事务同时操纵相同的数据时,每个事务都有各自的完整数据空间。由并发事务所做的修改必须与任何其他并发事务所做的修改隔离。事务查看数据更新时,数据所处的状态要么是另一事务修改它之前的状态,要么是另一事务修改它之后的状态,事务不会查看到中间状态的数据。
事务最复杂问题都是由事务隔离性引起的。完全的隔离性是不现实的,完全的隔离性要求数据库同一时间只执行一条事务,这样会严重影响性能。
4. 持久性(Durability)
这是最好理解的一个特性:持久性,意味着在事务完成以后,该事务所对数据库所作的更改便持久的保存在数据库之中,并不会被回滚。(完成的事务是系统永久的部分,对系统的影响是永久性的,该修改即使出现致命的系统故障也将一直保持)
write ahead logging:SQL Server中使用了WAL(Write-Ahead Logging)技术来保证事务日志的ACID特性,在数据写入到数据库之前,先写入到日志,再将日志记录变更到存储器中。
事务的隔离级别
数据库事务的隔离级别有4种,由低到高分别为Read uncommitted 、Read committed 、Repeatable read 、Serializable 。而且,在事务的并发操作中可能会出现脏读,不可重复读,幻读。
1. Read uncommitted(读未提交)
读未提交,顾名思义,就是一个事务可以读取另一个未提交事务的数据。
事例:老板要给程序员发工资,程序员的工资是3.6万/月。但是发工资时老板不小心按错了数字,按成3.9万/月,该钱已经打到程序员的户口,但是事务还没有提交,就在这时,程序员去查看自己这个月的工资,发现比往常多了3千元,以为涨工资了非常高兴。但是老板及时发现了不对,马上回滚差点就提交了的事务,将数字改成3.6万再提交。
分析:实际程序员这个月的工资还是3.6万,但是程序员看到的是3.9万。他看到的是老板还没提交事务时的数据。这就是脏读。
那怎么解决脏读呢?Read committed!读提交,能解决脏读问题。
2. Read committed (读已提交)
读提交,顾名思义,就是一个事务要等另一个事务提交后才能读取数据。
事例:程序员拿着信用卡去享受生活(卡里当然是只有3.6万),当他埋单时(程序员事务开启),收费系统事先检测到他的卡里有3.6万,就在这个时候!!程序员的妻子要把钱全部转出充当家用,并提交。当收费系统准备扣款时,再检测卡里的金额,发现已经没钱了(第二次检测金额当然要等待妻子转出金额事务提交完)。程序员就会很郁闷,明明卡里是有钱的…
分析:这就是读提交,若有事务对数据进行更新(UPDATE)操作时,读操作事务要等待这个更新操作事务提交后才能读取数据,可以解决脏读问题。但在这个事例中,出现了一个事务范围内两个相同的查询却返回了不同数据,这就是不可重复读。
3. Repeatable read (可重复读)
重复读,就是在开始读取数据(事务开启)时,不再允许修改操作
事例:程序员拿着信用卡去享受生活(卡里当然是只有3.6万),当他埋单时(事务开启,不允许其他事务的UPDATE修改操作),收费系统事先检测到他的卡里有3.6万。这个时候他的妻子不能转出金额了。接下来收费系统就可以扣款了。
分析:重复读可以解决不可重复读问题。写到这里,应该明白的一点就是,不可重复读对应的是修改,即UPDATE操作。但是可能还会有幻读问题。因为幻读问题对应的是插入INSERT操作,而不是UPDATE操作。
什么时候会出现幻读?
事例:程序员某一天去消费,花了2千元,然后他的妻子去查看他今天的消费记录(全表扫描FTS,妻子事务开启),看到确实是花了2千元,就在这个时候,程序员花了1万买了一部电脑,即新增INSERT了一条消费记录,并提交。当妻子打印程序员的消费记录清单时(妻子事务提交),发现花了1.2万元,似乎出现了幻觉,这就是幻读。
那怎么解决幻读问题?Serializable!
4. Serializable 序列化
Serializable 是最高的事务隔离级别,在该级别下,事务串行化顺序执行,可以避免脏读、不可重复读与幻读。但是这种事务隔离级别效率低下,比较耗数据库性能,一般不使用。
值得一提的是:大多数数据库默认的事务隔离级别是Read committed,比如Sql Server , Oracle。mysql的默认隔离级别是Repeatable read。
什么是分布式事务
分布式事务就是指事务的参与者、支持事务的服务器、资源服务器以及事务管理器分别位于不同的分布式系统的不同节点之上。简单的说,就是一次大的操作由不同的小操作组成,这些小的操作分布在不同的服务器上,且属于不同的应用,分布式事务需要保证这些小操作要么全部成功,要么全部失败。本质上来说,分布式事务就是为了保证不同数据库的数据一致性。
CAP理论
CAP原则又称CAP定理,指的是在一个分布式系统中, Consistency(一致性)、 Availability(可用性)、Partition tolerance(分区容错性),三者不可得兼。
CAP原则是NOSQL数据库的基石。Consistency(一致性)。 Availability(可用性)。Partition tolerance(分区容错性)。
分布式系统的CAP理论:理论首先把分布式系统中的三个特性进行了如下归纳:
一致性(C):在分布式系统中的所有数据备份,在同一时刻是否同样的值。(等同于所有节点访问同一份最新的数据副本)
可用性(A):在集群中一部分节点故障后,集群整体是否还能响应客户端的读写请求。(对数据更新具备高可用性)
分区容忍性(P):以实际效果而言,分区相当于对通信的时限要求。系统如果不能在时限内达成数据一致性,就意味着发生了分区的情况,必须就当前操作在C和A之间做出选择。
BASE理论
BASE是Basically Available(基本可用)、Soft state(软状态)和Eventually consistent(最终一致性)三个短语的简写,BASE是对CAP中一致性和可用性权衡的结果,其来源于对大规模互联网系统分布式实践的结论,是基于CAP定理逐步演化而来的,其核心思想是即使无法做到强一致性(Strong consistency),但每个应用都可以根据自身的业务特点,采用适当的方式来使系统达到最终一致性(Eventual consistency)。接下来我们着重对BASE中的三要素进行详细讲解。
基本可用
基本可用是指分布式系统在出现不可预知故障的时候,允许损失部分可用性——但请注意,这绝不等价于系统不可用,以下两个就是“基本可用”的典型例子。
响应时间上的损失:正常情况下,一个在线搜索引擎需要0.5秒内返回给用户相应的查询结果,但由于出现异常(比如系统部分机房发生断电或断网故障),查询结果的响应时间增加到了1~2秒。
功能上的损失:正常情况下,在一个电子商务网站上进行购物,消费者几乎能够顺利地完成每一笔订单,但是在一些节日大促购物高峰的时候,由于消费者的购物行为激增,为了保护购物系统的稳定性,部分消费者可能会被引导到一个降级页面。
弱状态
弱状态也称为软状态,和硬状态相对,是指允许系统中的数据存在中间状态,并认为该中间状态的存在不会影响系统的整体可用性,即允许系统在不同节点的数据副本之间进行数据同步的过程存在延时。
最终一致性
最终一致性强调的是系统中所有的数据副本,在经过一段时间的同步后,最终能够达到一个一致的状态。因此,最终一致性的本质是需要系统保证最终数据能够达到一致,而不需要实时保证系统数据的强一致性。
亚马逊首席技术官Werner Vogels在于2008年发表的一篇文章中对最终一致性进行了非常详细的介绍。他认为最终一致性是一种特殊的弱一致性:系统能够保证在没有其他新的更新操作的情况下,数据最终一定能够达到一致的状态,因此所有客户端对系统的数据访问都能够取到最新的值。同时,在没有发生故障的前提下,数据达到一致状态的时间延迟,取决于网络延迟,系统负载和数据复制方案设计等因素。
在实际工程实践中,最终一致性存在以下五类主要变种。
因果一致性:
因果一致性是指,如果进程A在更新完某个数据项后通知了进程B,那么进程B之后对该数据项的访问都应该能够获取到进程A更新后的最新值,并且如果进程B要对该数据项进行更新操作的话,务必基于进程A更新后的最新值,即不能发生丢失更新情况。与此同时,与进程A无因果关系的进程C的数据访问则没有这样的限制。
读己之所写:
读己之所写是指,进程A更新一个数据项之后,它自己总是能够访问到更新过的最新值,而不会看到旧值。也就是说,对于单个数据获取者而言,其读取到的数据一定不会比自己上次写入的值旧。因此,读己之所写也可以看作是一种特殊的因果一致性。
会话一致性:
会话一致性将对系统数据的访问过程框定在了一个会话当中:系统能保证在同一个有效的会话中实现“读己之所写”的一致性,也就是说,执行更新操作之后,客户端能够在同一个会话中始终读取到该数据项的最新值。
单调读一致性:
单调读一致性是指如果一个进程从系统中读取出一个数据项的某个值后,那么系统对于该进程后续的任何数据访问都不应该返回更旧的值。
单调写一致性:
单调写一致性是指,一个系统需要能够保证来自同一个进程的写操作被顺序地执行。
以上就是最终一致性的五类常见的变种,在时间系统实践中,可以将其中的若干个变种互相结合起来,以构建一个具有最终一致性的分布式系统。事实上,最终一致性并不是只有那些大型分布式系统才设计的特性,许多现代的关系型数据库都采用了最终一致性模型。在现代关系型数据库中,大多都会采用同步和异步方式来实现主备数据复制技术。在同步方式中,数据的复制通常是更新事务的一部分,因此在事务完成后,主备数据库的数据就会达到一致。而在异步方式中,备库的更新往往存在延时,这取决于事务日志在主备数据库之间传输的时间长短,如果传输时间过长或者甚至在日志传输过程中出现异常导致无法及时将事务应用到备库上,那么很显然,从备库中读取的数据将是旧的,因此就出现了不一致的情况。当然,无论是采用多次重试还是认为数据订正,关系型数据库还是能保证最终数据达到一致——这就是系统提供最终一致性保证的经典案例。
总的来说,BASE理论面向的是大型高可用可扩展的分布式系统,和传统事务的ACID特性是相反的,它完全不同于ACID的强一致性模型,而是提出通过牺牲强一致性来获得可用性,并允许数据在一段时间内是不一致的,但最终达到一致状态。但同时,在实际的分布式场景中,不同业务单元和组件对数据一致性的要求是不同的,因此在具体的分布式系统架构设计过程中,ACID特性与BASE理论往往又会结合在一起使用。
酸碱平衡
从ACID和BASE来说,ACID是为了保证一致性而诞生,因而侧重一致性;BASE是为了高可用系统的设计而诞生,因而侧重可用性。在分解C和A的情况时,肯定要涉及P,所以CAP理论统一了这一切。如果非要说酸碱,或者说酸碱平衡,那就是平衡于CAP理论。
CAP并不与ACID中的A(原子性)冲突,值得讨论的是ACID中的C(一致性)和I(隔离性)。ACID的C指的是事务不能破坏任何数据库规则,如键的唯一性。与之相比,CAP的C仅指单一副本这个意义上的一致性,因此只是ACID一致性约束的一个严格的子集。如果系统要求ACID中的I(隔离性),那么它在分区期间最多可以在分区一侧维持操作。事务的可串行性(serializability)要求全局的通信,因此在分区的情况下不能成立。
C与A之间的取舍可以在同一系统内以非常细小的粒度反复发生,而每一次的决策可能因为具体的操作,乃至因为牵涉到特定的数据或用户而有所不同。我们在分布式系统设计的两大原则中讨论过保持一致性的手段:同步复制和异步复制,结合复制协议的各种模式,请参考下表。例如简单满足了C,但延迟升高了,吞吐量下来了,还有什么可用性?我觉得延迟是包含在可用性的范围内的,不可用就是延迟的极大极限值。还有文章就只讨论一致性,可用性和性能问题(比如阿里何登成的《数据一致性-分区可用性-性能——多副本强同步数据库系统实现之我见》),说明在不考虑分区的情况下,CA问题依然是系统设计的难点。
可用性并不是简单的网络连通,服务可以访问,数据可以读取就是可用性,对于互联网业务,可用性是完整的用户体验,甚至会延伸到用户现实生活中(补偿)。有的系统必须容忍大规模可靠分布式系统中的数据不一致,其中原因就是为了在高并发条件下提高读写性能。
必须容忍大规模可靠分布式系统中的数据不一致,有两个原因:在高并发条件下提高读写性能, 并要区分物理上导致的不一致和协议规定的不一致。
节点已经宕机,副本无法访问(物理)
法定数模型会使部分系统不可用的分区情况,即使节点已启动并运行(paxos协议)
网络断开,节点孤立(物理)
所以,保证不发生分区,CA也不是免费午餐:尽管保证了网络可靠性,尽量不发生分区,同时获得CA也不是一件简单的事情。
CA系统才是真正的难点。
宣称是CA系统的,目前有两家:一家是Google的Spanner,一家是Alibaba的OceanBase。
分布式事务协议
常见的分布式事务协议分为两阶段提交和三阶段提交,下面重点介绍下这两种分布式协议。
两阶段提交
两阶段提交协议是协调所有分布式原子事务参与者,并决定提交或取消(回滚)的分布式算法。
(1)协议参与者
在两阶段提交协议中,系统一般包含两类机器(或节点):一类为协调者(coordinator),通常一个系统中只有一个;另一类为事务参与者(participants,cohorts或workers),一般包含多个,在数据存储系统中可以理解为数据副本的个数。协议中假设每个节点都会记录写前日志(write-ahead log)并持久性存储,即使节点发生故障日志也不会丢失。协议中同时假设节点不会发生永久性故障而且任意两个节点都可以互相通信。
(2)两个阶段的执行
1.请求阶段(commit-request phase,或称表决阶段,voting phase)在请求阶段,协调者将通知事务参与者准备提交或取消事务,然后进入表决过程。在表决过程中,参与者将告知协调者自己的决策:同意(事务参与者本地作业执行成功)或取消(本地作业执行故障)。
2.提交阶段(commit phase)在该阶段,协调者将基于第一个阶段的投票结果进行决策:提交或取消。当且仅当所有的参与者同意提交事务协调者才通知所有的参与者提交事务,否则协调者将通知所有的参与者取消事务。参与者在接收到协调者发来的消息后将执行响应的操作。
3)两阶段提交的缺点
1.同步阻塞问题。执行过程中,所有参与节点都是事务阻塞型的。当参与者占有公共资源时,其他第三方节点访问公共资源不得不处于阻塞状态。
2.单点故障。由于协调者的重要性,一旦协调者发生故障。参与者会一直阻塞下去。尤其在第二阶段,协调者发生故障,那么所有的参与者还都处于锁定事务资源的状态中,而无法继续完成事务操作。(如果是协调者挂掉,可以重新选举一个协调者,但是无法解决因为协调者宕机导致的参与者处于阻塞状态的问题)
3.数据不一致。在二阶段提交的阶段二中,当协调者向参与者发送commit请求之后,发生了局部网络异常或者在发送commit请求过程中协调者发生了故障,这回导致只有一部分参与者接受到了commit请求。而在这部分参与者接到commit请求之后就会执行commit操作。但是其他部分未接到commit请求的机器则无法执行事务提交。于是整个分布式系统便出现了数据部一致性的现象。
(4)两阶段提交无法解决的问题
当协调者出错,同时参与者也出错时,两阶段无法保证事务执行的完整性。考虑协调者再发出commit消息之后宕机,而唯一接收到这条消息的参与者同时也宕机了。那么即使协调者通过选举协议产生了新的协调者,这条事务的状态也是不确定的,没人知道事务是否被已经提交。
三阶段提交
三阶段提交协议在协调者和参与者中都引入超时机制,并且把两阶段提交协议的第一个阶段拆分成了两步:询问,然后再锁资源,最后真正提交。
(1)三个阶段的执行
1.CanCommit阶段3PC的CanCommit阶段其实和2PC的准备阶段很像。协调者向参与者发送commit请求,参与者如果可以提交就返回Yes响应,否则返回No响应。
2.PreCommit阶段Coordinator根据Cohort的反应情况来决定是否可以继续事务的PreCommit操作。根据响应情况,有以下两种可能。A.假如Coordinator从所有的Cohort获得的反馈都是Yes响应,那么就会进行事务的预执行:发送预提交请求。Coordinator向Cohort发送PreCommit请求,并进入Prepared阶段。事务预提交。Cohort接收到PreCommit请求后,会执行事务操作,并将undo和redo信息记录到事务日志中。响应反馈。如果Cohort成功的执行了事务操作,则返回ACK响应,同时开始等待最终指令。
B.假如有任何一个Cohort向Coordinator发送了No响应,或者等待超时之后,Coordinator都没有接到Cohort的响应,那么就中断事务:发送中断请求。Coordinator向所有Cohort发送abort请求。中断事务。Cohort收到来自Coordinator的abort请求之后(或超时之后,仍未收到Cohort的请求),执行事务的中断。
3.DoCommit阶段
该阶段进行真正的事务提交,也可以分为以下两种情况:
执行提交
A.发送提交请求。Coordinator接收到Cohort发送的ACK响应,那么他将从预提交状态进入到提交状态。并向所有Cohort发送doCommit请求。B.事务提交。Cohort接收到doCommit请求之后,执行正式的事务提交。并在完成事务提交之后释放所有事务资源。C.响应反馈。事务提交完之后,向Coordinator发送ACK响应。D.完成事务。Coordinator接收到所有Cohort的ACK响应之后,完成事务。
中断事务
Coordinator没有接收到Cohort发送的ACK响应(可能是接受者发送的不是ACK响应,也可能响应超时),那么就会执行中断事务。
(2)三阶段提交协议和两阶段提交协议的不同
对于协调者(Coordinator)和参与者(Cohort)都设置了超时机制(在2PC中,只有协调者拥有超时机制,即如果在一定时间内没有收到cohort的消息则默认失败)。在2PC的准备阶段和提交阶段之间,插入预提交阶段,使3PC拥有CanCommit、PreCommit、DoCommit三个阶段。PreCommit是一个缓冲,保证了在最后提交阶段之前各参与节点的状态是一致的。
(2)三阶段提交协议的缺点
如果进入PreCommit后,Coordinator发出的是abort请求,假设只有一个Cohort收到并进行了abort操作,而其他对于系统状态未知的Cohort会根据3PC选择继续Commit,此时系统状态发生不一致性。
分布式事务的解决方案
分布式事务的解决方案有如下几种:
全局事务(DTP模型)
基于可靠消息服务的分布式事务
最大努力通知
TCC
全局事务(DTP模型)
全局事务基于DTP模型实现。DTP是由X/Open组织提出的一种分布式事务模型——X/Open Distributed Transaction Processing Reference Model。它规定了要实现分布式事务,需要三种角色:
1、AP:Application 应用系统 它就是我们开发的业务系统,在我们开发的过程中,可以使用资源管理器提供的事务接口来实现分布式事务。
2、TM:Transaction Manager 事务管理器
分布式事务的实现由事务管理器来完成,它会提供分布式事务的操作接口供我们的业务系统调用。这些接口称为TX接口。事务管理器还管理着所有的资源管理器,通过它们提供的XA接口来同一调度这些资源管理器,以实现分布式事务。DTP只是一套实现分布式事务的规范,并没有定义具体如何实现分布式事务,TM可以采用2PC、3PC、Paxos等协议实现分布式事务。3、RM:Resource Manager 资源管理器
能够提供数据服务的对象都可以是资源管理器,比如:数据库、消息中间件、缓存等。大部分场景下,数据库即为分布式事务中的资源管理器。资源管理器能够提供单数据库的事务能力,它们通过XA接口,将本数据库的提交、回滚等能力提供给事务管理器调用,以帮助事务管理器实现分布式的事务管理。XA是DTP模型定义的接口,用于向事务管理器提供该资源管理器(该数据库)的提交、回滚等能力。DTP只是一套实现分布式事务的规范,RM具体的实现是由数据库厂商来完成的。
基于可靠消息服务的分布式事务
这种实现分布式事务的方式需要通过消息中间件来实现。假设有A和B两个系统,分别可以处理任务A和任务B。此时系统A中存在一个业务流程,需要将任务A和任务B在同一个事务中处理。下面来介绍基于消息中间件来实现这种分布式事务。
1.在系统A处理任务A前,首先向消息中间件发送一条消息2.消息中间件收到后将该条消息持久化,但并不投递。此时下游系统B仍然不知道该条消息的存在。3.消息中间件持久化成功后,便向系统A返回一个确认应答;4.系统A收到确认应答后,则可以开始处理任务A;5.任务A处理完成后,向消息中间件发送Commit请求。该请求发送完成后,对系统A而言,该事务的处理过程就结束了,此时它可以处理别的任务了。 6.但commit消息可能会在传输途中丢失,从而消息中间件并不会向系统B投递这条消息,从而系统就会出现不一致性。这个问题由消息中间件的事务回查机制完成,下文会介绍。7.消息中间件收到Commit指令后,便向系统B投递该消息,从而触发任务B的执行;8.当任务B执行完成后,系统B向消息中间件返回一个确认应答,告诉消息中间件该消息已经成功消费,此时,这个分布式事务完成。
上述过程可以得出如下几个结论:
消息中间件扮演者分布式事务协调者的角色。
系统A完成任务A后,到任务B执行完成之间,会存在一定的时间差。在这个时间差内,整个系统处于数据不一致的状态,但这短暂的不一致性是可以接受的,因为经过短暂的时间后,系统又可以保持数据一致性,满足BASE理论。
上述过程中,如果任务A处理失败,那么需要进入回滚流程,如下图所示:
1.若系统A在处理任务A时失败,那么就会向消息中间件发送Rollback请求。和发送Commit请求一样,系统A发完之后便可以认为回滚已经完成,它便可以去做其他的事情。
2.消息中间件收到回滚请求后,直接将该消息丢弃,而不投递给系统B,从而不会触发系统B的任务B。
此时系统又处于一致性状态,因为任务A和任务B都没有执行。
上面所介绍的Commit和Rollback都属于理想情况,但在实际系统中,Commit和Rollback指令都有可能在传输途中丢失。那么当出现这种情况的时候,消息中间件是如何保证数据一致性呢?——答案就是超时询问机制。
系统A除了实现正常的业务流程外,还需提供一个事务询问的接口,供消息中间件调用。当消息中间件收到一条事务型消息后便开始计时,如果到了超时时间也没收到系统A发来的Commit或Rollback指令的话,就会主动调用系统A提供的事务询问接口询问该系统目前的状态。该接口会返回三种结果:
1.提交 若获得的状态是“提交”,则将该消息投递给系统B。2.回滚 若获得的状态是“回滚”,则直接将条消息丢弃。3.处理中 若获得的状态是“处理中”,则继续等待。
消息中间件的超时询问机制能够防止上游系统因在传输过程中丢失Commit/Rollback指令而导致的系统不一致情况,而且能降低上游系统的阻塞时间,上游系统只要发出Commit/Rollback指令后便可以处理其他任务,无需等待确认应答。而Commit/Rollback指令丢失的情况通过超时询问机制来弥补,这样大大降低上游系统的阻塞时间,提升系统的并发度。
下面来说一说消息投递过程的可靠性保证。 当上游系统执行完任务并向消息中间件提交了Commit指令后,便可以处理其他任务了,此时它可以认为事务已经完成,接下来消息中间件一定会保证消息被下游系统成功消费掉!那么这是怎么做到的呢?这由消息中间件的投递流程来保证。
消息中间件向下游系统投递完消息后便进入阻塞等待状态,下游系统便立即进行任务的处理,任务处理完成后便向消息中间件返回应答。消息中间件收到确认应答后便认为该事务处理完毕!
如果消息在投递过程中丢失,或消息的确认应答在返回途中丢失,那么消息中间件在等待确认应答超时之后就会重新投递,直到下游消费者返回消费成功响应为止。当然,一般消息中间件可以设置消息重试的次数和时间间隔,比如:当第一次投递失败后,每隔五分钟重试一次,一共重试3次。如果重试3次之后仍然投递失败,那么这条消息就需要人工干预。
有的同学可能要问:消息投递失败后为什么不回滚消息,而是不断尝试重新投递?
这就涉及到整套分布式事务系统的实现成本问题。 我们知道,当系统A将向消息中间件发送Commit指令后,它便去做别的事情了。如果此时消息投递失败,需要回滚的话,就需要让系统A事先提供回滚接口,这无疑增加了额外的开发成本,业务系统的复杂度也将提高。对于一个业务系统的设计目标是,在保证性能的前提下,最大限度地降低系统复杂度,从而能够降低系统的运维成本。
不知大家是否发现,上游系统A向消息中间件提交Commit/Rollback消息采用的是异步方式,也就是当上游系统提交完消息后便可以去做别的事情,接下来提交、回滚就完全交给消息中间件来完成,并且完全信任消息中间件,认为它一定能正确地完成事务的提交或回滚。然而,消息中间件向下游系统投递消息的过程是同步的。也就是消息中间件将消息投递给下游系统后,它会阻塞等待,等下游系统成功处理完任务返回确认应答后才取消阻塞等待。为什么这两者在设计上是不一致的呢?
首先,上游系统和消息中间件之间采用异步通信是为了提高系统并发度。业务系统直接和用户打交道,用户体验尤为重要,因此这种异步通信方式能够极大程度地降低用户等待时间。此外,异步通信相对于同步通信而言,没有了长时间的阻塞等待,因此系统的并发性也大大增加。但异步通信可能会引起Commit/Rollback指令丢失的问题,这就由消息中间件的超时询问机制来弥补。
那么,消息中间件和下游系统之间为什么要采用同步通信呢?
异步能提升系统性能,但随之会增加系统复杂度;而同步虽然降低系统并发度,但实现成本较低。因此,在对并发度要求不是很高的情况下,或者服务器资源较为充裕的情况下,我们可以选择同步来降低系统的复杂度。 我们知道,消息中间件是一个独立于业务系统的第三方中间件,它不和任何业务系统产生直接的耦合,它也不和用户产生直接的关联,它一般部署在独立的服务器集群上,具有良好的可扩展性,所以不必太过于担心它的性能,如果处理速度无法满足我们的要求,可以增加机器来解决。而且,即使消息中间件处理速度有一定的延迟那也是可以接受的,因为前面所介绍的BASE理论就告诉我们了,我们追求的是最终一致性,而非实时一致性,因此消息中间件产生的时延导致事务短暂的不一致是可以接受的。
最大努力通知
最大努力通知方案主要也是借助MQ消息系统来进行事务控制,这一点与可靠消息最终一致方案一样。看来MQ中间件确实在一个分布式系统架构中,扮演者重要的角色。最大努力通知方案是比较简单的分布式事务方案,它本质上就是通过定期校对,实现数据一致性。
实现:
1.主要由业务活动的主动方,在完成相关业务处理之后,向业务活动的被动方发送消息;消息允许丢失。
2.主动方可以设置时间阶梯型的通知规则,使通知效率达到最高;在通知N次之后就不再通知,需要人工介入。
3.业务活动的被动方根据定时的策略,向业务活动的主动方进行轮询,进而恢复丢失的业务消息;这里注意被动方还是需要实现业务幂等的; 幂等实现的几种方式:一种基于某些业务规则进行判断,根据业务主键实现幂等;第二张是本地使用一张消息记录表记录消息的消费情况,技术层面实现幂等。
TCC
关于TCC(Try-Confirm-Cancel)的概念,最早是由Pat Helland于2007年发表的一篇名为《Life beyond Distributed Transactions:an Apostate’s Opinion》的论文提出。在该论文中,TCC还是以Tentative-Confirmation-Cancellation作为名称;正式以Try-Confirm-Cancel作为名称的,可能是Atomikos(Gregor Hohpe所著书籍《Enterprise Integration Patterns》中收录了关于TCC的介绍,提到了Atomikos的Try-Confirm-Cancel,并认为二者是相似的概念)。
国内最早关于TCC的报道,应该是InfoQ上对阿里程立博士的一篇采访。经过程博士的这一次传道之后,TCC在国内逐渐被大家广为了解并接受。相应的实现方案和开源框架也先后被发布出来,ByteTCC就是其中之一。
TCC事务机制相对于传统事务机制(X/Open XA),其特征在于它不依赖资源管理器(RM)对XA的支持,而是通过对(由业务系统提供的)业务逻辑的调度来实现分布式事务。对于业务系统中一个特定的业务逻辑S,其对外提供服务时,必须接受一些不确定性,即对业务逻辑执行的一次调用仅是一个临时性操作,调用它的消费方服务M保留了后续的取消权。如果M认为全局事务应该rollback,它会要求取消之前的临时性操作,这就对应S的一个取消操作。而当M认为全局事务应该commit时,它会放弃之前临时性操作的取消权,这对应S的一个确认操作。 每一个初步操作,最终都会被确认或取消。因此,针对一个具体的业务服务,TCC事务机制需要业务系统提供三段业务逻辑:初步操作Try、确认操作Confirm、取消操作Cancel。
1. 初步操作(Try)TCC事务机制中的业务逻辑(Try),从执行阶段来看,与传统事务机制中业务逻辑相同。但从业务角度来看,是不一样的。TCC机制中的Try仅是一个初步操作,它和后续的次确认一起才能真正构成一个完整的业务逻辑。因此,可以认为[传统事务机制]的业务逻辑 = [TCC事务机制]的初步操作(Try) + [TCC事务机制]的确认逻辑(Confirm)。TCC机制将传统事务机制中的业务逻辑一分为二,拆分后保留的部分即为初步操作(Try);而分离出的部分即为确认操作(Confirm),被延迟到事务提交阶段执行。
TCC事务机制以初步操作(Try)为中心,确认操作(Confirm)和取消操作(Cancel)都是围绕初步操作(Try)而展开。因此,Try阶段中的操作,其保障性是最好的,即使失败,仍然有取消操作(Cancel)可以将其不良影响进行回撤。
2. 确认操作(Confirm)确认操作(Confirm)是对初步操作(Try)的一个补充。当TCC事务管理器认为全局事务可以正确提交时,就会逐个执行初步操作(Try)指定的确认操作(Confirm),将初步操作(Try)未完成的事项最终完成。
3. 取消操作(Cancel)取消操作(Cancel)是对初步操作(Try)的一个回撤。当TCC事务管理器认为全局事务不能正确提交时,就会逐个执行初步操作(Try)指定的取消操作(Cancel),将初步操作(Try)已完成的事项全部撤回。
在传统事务机制中,业务逻辑的执行和事务的处理,是在不同的阶段由不同的部件来处理的:业务逻辑部分访问资源实现数据存储,其处理是由业务系统负责;事务处理部分通过协调资源管理器以实现事务管理,其处理由事务管理器来负责。二者没有太多交互的地方,所以,传统事务管理器的事务处理逻辑,仅需要着眼于事务完成(commit/rollback)阶段,而不必关注业务执行阶段。而在TCC事务机制中的业务逻辑和事务处理,其关系就错综复杂:业务逻辑(Try/Confirm/Cancel)阶段涉及所参与资源事务的commit/rollback;全局事务commit/rollback时又涉及到业务逻辑(Try/Confirm/Cancel)的执行。
TCC全局事务必须基于RM本地事务来实现全局事务
TCC服务是由Try/Confirm/Cancel业务构成的, 其Try/Confirm/Cancel业务在执行时,会访问资源管理器(Resource Manager,下文简称RM)来存取数据。这些存取操作,必须要参与RM本地事务,以使其更改的数据要么都commit,要么都rollback。
这一点不难理解,考虑一下如下场景:
假设图中的服务B没有基于RM本地事务(以RDBS为例,可通过设置auto-commit为true来模拟),那么一旦[B:Try]操作中途执行失败,TCC事务框架后续决定回滚全局事务时,该[B:Cancel]则需要判断[B:Try]中哪些操作已经写到DB、哪些操作还没有写到DB:假设[B:Try]业务有5个写库操作,[B:Cancel]业务则需要逐个判断这5个操作是否生效,并将生效的操作执行反向操作。
不幸的是,由于[B:Cancel]业务也有n(0<=n<=5)个反向的写库操作,此时一旦[B:Cancel]也中途出错,则后续的[B:Cancel]执行任务更加繁重。因为,相比第一次[B:Cancel]操作,后续的[B:Cancel]操作还需要判断先前的[B:Cancel]操作的n(0<=n<=5)个写库中哪几个已经执行、哪几个还没有执行,这就涉及到了幂等性问题。而对幂等性的保障,又很可能还需要涉及额外的写库操作,该写库操作又会因为没有RM本地事务的支持而存在类似问题。。。可想而知,如果不基于RM本地事务,TCC事务框架是无法有效的管理TCC全局事务的。
反之,基于RM本地事务的TCC事务,这种情况则会很容易处理:[B:Try]操作中途执行失败,TCC事务框架将其参与RM本地事务直接rollback即可。后续TCC事务框架决定回滚全局事务时,在知道“[B:Try]操作涉及的RM本地事务已经rollback”的情况下,根本无需执行[B:Cancel]操作。
换句话说,基于RM本地事务实现TCC事务框架时,一个TCC型服务的cancel业务要么执行,要么不执行,不需要考虑部分执行的情况。
TCC事务框架应该提供Confirm/Cancel服务的幂等性保障
一般认为,服务的幂等性,是指针对同一个服务的多次(n>1)请求和对它的单次(n=1)请求,二者具有相同的副作用。
在TCC事务模型中,Confirm/Cancel业务可能会被重复调用,其原因很多。比如,全局事务在提交/回滚时会调用各TCC服务的Confirm/Cancel业务逻辑。执行这些Confirm/Cancel业务时,可能会出现如网络中断的故障而使得全局事务不能完成。因此,故障恢复机制后续仍然会重新提交/回滚这些未完成的全局事务,这样就会再次调用参与该全局事务的各TCC服务的Confirm/Cancel业务逻辑。
既然Confirm/Cancel业务可能会被多次调用,就需要保障其幂等性。 那么,应该由TCC事务框架来提供幂等性保障?还是应该由业务系统自行来保障幂等性呢? 个人认为,应该是由TCC事务框架来提供幂等性保障。如果仅仅只是极个别服务存在这个问题的话,那么由业务系统来负责也是可以的;然而,这是一类公共问题,毫无疑问,所有TCC服务的Confirm/Cancel业务存在幂等性问题。TCC服务的公共问题应该由TCC事务框架来解决;而且,考虑一下由业务系统来负责幂等性需要考虑的问题,就会发现,这无疑增大了业务系统的复杂度。
以上是关于深入分布式事务的主要内容,如果未能解决你的问题,请参考以下文章