Spark中文峰会7月4日|Apache Spark 3.0简介:回顾过去的十年,并展望未来
Posted Apache Spark技术交流社区
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Spark中文峰会7月4日|Apache Spark 3.0简介:回顾过去的十年,并展望未来相关的知识,希望对你有一定的参考价值。
就在本周六、日
SPARK + AI SUMMIT 2020 中文精华版线上峰会,在北美结束第一时间“闪电般快速”为诸位奉上一场技术盛筵。本次活动由阿里云开发者社区牵头,联合十四位来自北京、上海、杭州、硅谷的PMC和意见领袖,一一还原英文现场的经典分享。
除 Databricks、Facebook、阿里巴巴、Intel 、领英等一线厂商的经典应用场景外,还有Ray、SQL、Structured Streaming、 MLflow、Koalas、K8s、Delta lake、Photon等新奇议题及社区生态的最新落地。
点击详细议程:
7月4日上午议题:
Apache Spark 3.0简介:回顾过去的十年,并展望未来
李潇
Databricks Spark 研发部主管,领导 Spark,Koalas,Databricks runtime,OEM的研发团队。Apache Spark Committer、PMC成员。2011年从佛罗里达大学获得获得了博士学位。曾就职于IBM,获发明大师称号(Master Inventor),是异步数据库复制和一致性验证的领域专家,发表专利十余篇。(Github: gatorsmile)
我们将分享Apache Spark创建者Matei Zaharia的主题演讲,重点介绍Apache Spark 3.0 更易用、更快、更兼容的特点。Apache Spark 3.0 延续了项目初心,在SQL和Python API上取得了重大改进;自适应动态优化,使数据处理更易于访问,从而最大限度地减少手动配置。今年也是Spark首次开源发布的10周年纪念日,我们将回顾该项目及其用户群是如何增长的,以及Spark周围的生态系统(如Koalas, Delta Lake 和可视化工具)是如何发展的,共同探讨处理大规模数据的更简单、更有效的方案。
在Kubernetes上运行Apache Spark:最佳实践和陷阱
范振
花名辰繁,阿里云智能 EMR 团队高级技术专家。曾在搜狐京东工作,分别参与了 linux 内核、CDN、分布式计算和存储的研发工作。目前专注于大数据云原生化工作。
随着spark2.3引入spark on kubernetes以来,越来越多的公司开始关注这一特性。主要的原因一方面是在kubernetes上可以更好地隔离计算资源,另一方面是可以为公司提供一个统一的、云原生的基础架构技术栈。但是,如何能够稳定的、高性能的、省成本的以及安全的使用spark on kubernetes是一个很大的挑战。这次talk,我们主要谈一下在建立Data Mechanics平台(一种serverless形式的spark on kubernetes平台)的过程中积累的经验教训。
Structured Streaming生产化实践及调优
李元健
Databricks软件工程师。曾于2011年加入百度基础架构部,先后参与百度自研流式计算、分布式Tracing及批量计算系统的研发工作,2017年转岗项目经理,负责百度分布式计算平台研发工作。2019年加入Databricks Spark团队,参与开源软件及Databricks产品研发。
流式计算作业从研发完成到正式上线的过程中,往往需要做充分的预上线准备。本次分享旨在从如下四个方向入手,以现场demo的形式探讨Structured Streaming生产化实践及调优:
数据源相关参数:不合理的参数会增大流式作业计算负载,导致性能降低。
计算状态参数:不合理的设置导致无止尽的状态计算及内存耗尽。
数据输出相关参数:常见的小文件问题及应对建议。
线上作业的修改:针对已有checkpoint的线上作业修改思路及方案。
Apache Spark 3.0对Prometheus监控的原生支持
周康
花名榆舟,阿里云EMR技术专家。开源爱好者,是 Apache Spark/Hadoop/Parquet 等项目的贡献者。关注大规模分布式计算、调度、存储等系统,先后从事过 Spark、OLAP、Hadoop Yarn 等相关工作的落地。目前主要专注在 EMR 大数据上云的相关工作。
Apache Spark实现了一个支持可配置的metrics system,用户在生产环境中可以将Spark提供的metrics数据(包括driver、executor等)推送到多种Sink。Prometheus是一个开源的分布式监控系统,尤其在云原生时代被广泛使用。
Apache Spark也支持以Prometheus作为Sink,将metrics数据推送到Prometheus中来进行监控和报警。目前常见的实现方式有下面几种:
使用jmx exporter和Spark的JMXSink结合的方式;
使用第三方库;
实现Sink插件来支持更复杂的metrics;
本次分享会为大家介绍在Apache Spark 3.0中对Prometheus监控的原生支持,包括如何使用Prometheus特性、目前已经实现的metrics、以及如何对structured streaming 作业进行监控等。
钉钉群同步直播,欢迎钉钉扫码加入Apache Spark中国技术交流社区!
对开源大数据和感兴趣的同学可以加小编微信(下图二维码,备注“进群”)进入技术交流微信群。
以上是关于Spark中文峰会7月4日|Apache Spark 3.0简介:回顾过去的十年,并展望未来的主要内容,如果未能解决你的问题,请参考以下文章
在执行spar-sql程序中报错:java.lang.NoSuchMethodError: org.apache.spark.internal.Logging.$init$(Lorg/apache/s
Spark启动时报错localhost: failed to launch: nice -n 0 /home/chan/spark/spark-2.4.3-bin-hadoop2.7/bin/spar