重磅!一文深入深度学习模型压缩和加速
Posted 机器学习算法工程师
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了重磅!一文深入深度学习模型压缩和加速相关的知识,希望对你有一定的参考价值。
AI编辑:我是小将
https://zhuanlan.zhihu.com/p/179945324
本文已由原作者授权,不得擅自二次转载
1 背景
近年来深度学习模型在计算机视觉、自然语言处理、搜索推荐广告等各种领域,不断刷新传统模型性能,并得到了广泛应用。随着移动端设备计算能力的不断提升,移动端AI落地也成为了可能。相比于服务端,移动端模型的优势有:
减轻服务端计算压力,并利用云端一体化实现负载均衡。特别是在双11等大促场景,服务端需要部署很多高性能机器,才能应对用户流量洪峰。平时用户访问又没那么集中,存在巨大的流量不均衡问题。直接将模型部署到移动端,并在置信度较高情况下直接返回结果,而不需要请求服务端,可以大大节省服务端计算资源。同时在大促期间降低置信度阈值,平时又调高,可以充分实现云端一体负载均衡。
实时性好,响应速度快。在feed流推荐和物体实时检测等场景,需要根据用户数据的变化,进行实时计算推理。如果是采用服务端方案,则响应速度得不到保障,且易造成请求过于密集的问题。利用端计算能力,则可以实现实时计算。
稳定性高,可靠性好。在断网或者弱网情况下,请求服务端会出现失败。而采用端计算,则不会出现这种情况。在无人车和自动驾驶等可靠性要求很高的场景下,这一点尤为关键,可以保证在隧道、山区等场景下仍能稳定运行。
安全性高,用户隐私保护好。由于直接在端上做推理,不需要将用户数据传输到服务端,免去了网络通信中用户隐私泄露风险,也规避了服务端隐私泄露问题
移动端部署深度学习模型也有很大的挑战。主要表现在,移动端等嵌入式设备,在计算能力、存储资源、电池电量等方面均是受限的。故移动端模型必须满足模型尺寸小、计算复杂度低、电池耗电量低、下发更新部署灵活等条件。因此模型压缩和加速就成为了目前移动端AI的一个热门话题。模型压缩和加速不仅仅可以提升移动端模型性能,在服务端也可以大大加快推理响应速度,并减少服务器资源消耗,大大降低成本。结合移动端AI模型和服务端模型,实现云端一体化,是目前越来越广泛采用的方案。模型压缩和加速是两个不同的话题,有时候压缩并不一定能带来加速的效果,有时候又是相辅相成的。压缩重点在于减少网络参数量,加速则侧重在降低计算复杂度、提升并行能力等。模型压缩和加速是一个很大的命题,可以从多个角度优化。总体来看,个人认为主要分为三个层次:
算法应用层压缩加速。这个维度主要在算法应用层,也是大多数算法工程师的工作范畴。主要包括结构优化(如矩阵分解、分组卷积、小卷积核等)、量化与定点化、模型剪枝、模型蒸馏等。
框架层加速。这个维度主要在算法框架层,比如tf-lite、NCNN、MNN等。主要包括编译优化、缓存优化、稀疏存储和计算、NEON指令应用、算子优化等
硬件层加速。这个维度主要在AI硬件芯片层,目前有GPU、FPGA、ASIC等多种方案,各种TPU、NPU就是ASIC这种方案,通过专门为深度学习进行芯片定制,大大加速模型运行速度。
2 算法层压缩加速
1.1 结构优化
1.1.1 矩阵分解
将M x N的矩阵分解为M x K + K x N,只要让K<<M 且 K << N,就可以大大降低模型体积。比如在ALBERT的embedding层,就做了矩阵分解的优化。如下图
其中M为词表长度,也就是vocab_size,典型值为21128。N为隐层大小,典型值为1024,也就是hidden_size。K为我们设置的低维词嵌入空间,可以设置为128。
分解前:矩阵参数量为 (M * N)
分解后:参数量为 (MK + KN)
压缩量:(M * N) / (MK + KN), 由于M远大于N,故可近似为 N / k, 当N=2014,k=128时,可以压缩8倍
1.1.2 权值共享
相对于DNN全连接参数量过大的问题,CNN提出了局部感受野和权值共享的概念。在NLP中同样也有类似应用的场景。比如ALBert中,12层共用同一套参数,包括multi-head self attention和feed-forward,从而使得参数量降低到原来的1/12。这个方案对于模型压缩作用很大,但对于推理加速则收效甚微。因为共享权值并没有带来计算量的减少。
1.1.3 分组卷积
在视觉模型中应用较为广泛,比如shuffleNet,mobileNet等。我们以mobileNet为例。对于常规的M输入通道,N输出通道,dk x dk的kernel size的卷积,需要参数量为 M x N x dk x dk。这是因为每个输入通道,都会抽取N种特征(对应输出通道数),不同的输入通道需要不同的kernel来做抽取,然后叠加起来。故M个输入通道,N个输出通道,就需要M x N个kernel了。mobileNet对常规卷积做了优化,每个输入通道,仅需要一个kernel做特征提取,这叫做depth wise。如此M个通道可得到M个feature map。但我们想要的是N通道输出,怎么办呢?mobileNet采用一个常规1 x 1卷积来处理这个连接,从而转化到N个输出通道上。总结下来,mobileNet利用一个dk x dk的depth wise卷积和一个1 x 1的point wise卷积来实现一个常规卷积。
分组前:参数量 (M x N x dk x dk)
分组后:参数量 (M x dk x dk + M x N x 1 x 1)
压缩量:(M x dk x dk + M x N x 1 x 1) / (M x N x dk x dk), 近似为 1/(dk x dk)。dk的常见值为3,也就是3*3卷积,故可缩小约9倍
如下图所示
1.1.4 分解卷积
使用两个串联小卷积核来代替一个大卷积核。inceptionV2中创造性的提出了两个3x3的卷积核代替一个5x5的卷积核。在效果相同的情况下,参数量仅为原先的3x3x2 / 5x5 = 18/25
使用两个并联的非对称卷积核来代替一个正常卷积核。inceptionV3中将一个7x7的卷积拆分成了一个1x7和一个7x1, 卷积效果相同的情况下,大大减少了参数量,同时还提高了卷积的多样性。
1.1.5 其他
全局平均池化代替全连接层。这个才是大杀器!AlexNet和VGGNet中,全连接层几乎占据了90%的参数量。inceptionV1创造性的使用全局平均池化来代替最后的全连接层,使得其在网络结构更深的情况下(22层,AlexNet仅8层),参数量只有500万,仅为AlexNet的1/12
1x1卷积核的使用。1x1的卷积核可以说是性价比最高的卷积了,没有之一。它在参数量为1的情况下,同样能够提供线性变换,relu激活,输入输出channel变换等功能。VGGNet创造性的提出了1x1的卷积核
使用小卷积核来代替大卷积核。VGGNet全部使用3x3的小卷积核,来代替AlexNet中11x11和5x5等大卷积核。小卷积核虽然参数量较少,但也会带来特征面积捕获过小的问题。inception net认为越往后的卷积层,应该捕获更多更高阶的抽象特征。因此它在靠后的卷积层中使用的5x5等大面积的卷积核的比率较高,而在前面几层卷积中,更多使用的是1x1和3x3的卷积核。
1.2 量化
1.2.1 伪量化
深度学习模型参数通常是32bit浮点型,我们能否使用16bit,8bit,甚至1bit来存储呢?答案是肯定的。常见的做法是保存模型每一层时,利用低精度来保存每一个网络参数,同时保存拉伸比例scale和零值对应的浮点数zero_point。推理阶段,利用如下公式来网络参数还原为32bit浮点:
1.2.2 聚类与伪量化
一种实现伪量化的方案是,利用k-means等聚类算法,步骤如下:
将大小相近的参数聚在一起,分为一类。
每一类计算参数的平均值,作为它们量化后对应的值。
每一类参数存储时,只存储它们的聚类索引。索引和真实值(也就是类内平均值)保存在另外一张表中
推理时,利用索引和映射表,恢复为真实值。
过程如下图
从上可见,当只需要4个类时,我们仅需要2bit就可以实现每个参数的存储了,压缩量达到16倍。推理时通过查找表恢复为浮点值,精度损失可控。结合霍夫曼编码,可进一步优化存储空间。一般来说,当聚类数为N时,我们压缩量为 log(N))] / 32
1.2.3 定点化
与伪量化不同的是,定点化在推理时,不需要还原为浮点数。这需要框架实现算子的定点化运算支持。目前MNN、XNN等移动端AI框架中,均加入了定点化支持。
1.3 剪枝
1.3.1 剪枝流程
剪枝归纳起来就是取其精华去其糟粕。按照剪枝粒度可分为突触剪枝、神经元剪枝、权重矩阵剪枝等。总体思想是,将权重矩阵中不重要的参数设置为0,结合稀疏矩阵来进行存储和计算。通常为了保证performance,需要一小步一小步地进行迭代剪枝。步子大了,容易那个啥的,大家都懂的哈。常见迭代剪枝流程如下图所示
训练一个performance较好的大模型
评估模型中参数的重要性。常用的评估方法是,越接近0的参数越不重要。当然还有其他一些评估方法,这一块也是目前剪枝研究的热点
将不重要的参数去掉,或者说是设置为0。之后可以通过稀疏矩阵进行存储。比如只存储非零元素的index和value
训练集上微调,从而使得由于去掉了部分参数导致的performance下降能够尽量调整回来
验证模型大小和performance是否达到了预期,如果没有,则继续迭代进行。
1.3.2 突触剪枝
突触剪枝剪掉神经元之间的不重要的连接。对应到权重矩阵中,相当于将某个参数设置为0。常见的做法是,按照数值大小对参数进行排序,将大小排名最后的k%置零即可,k%为压缩率。如下图
1.3.3 神经元剪枝
神经元剪枝则直接将某个节点直接去掉。对应到权重矩阵中,相当于某一行和某一列置零。常见做法是,计算神经元对应的一行和一列参数的平方和的根,对神经元进行重要性排序,将大小排名最后的k%置零。如下图
1.3.4 权重矩阵剪枝
除了将权重矩阵中某些零散的参数,或者整行整列去掉外,我们能否将整个权重矩阵去掉呢?答案是肯定的,目前也有很多这方面的研究。NeurIPS 2019有篇文章
Are Sixteen Heads Really Better than One? arxiv.org
深入分析了BERT多头机制中每个头到底有多大用,结果发现很多头其实没啥卵用。他在要去掉的head上,加入mask,来做每个头的重要性分析。作者先分析了单独去掉每层每个头,WMT任务上bleu的改变。发现,大多数head去掉后,对整体影响不大。如下图所示
然后作者分析了,每层只保留一个最重要的head后,ACC的变化。可见很多层只保留一个head,performance影响不大。如下图所示
由此可见,直接进行权重矩阵剪枝,也是可行的方案。相比突触剪枝和神经元剪枝,压缩率要大很多。
1.4 蒸馏
1.4.1 蒸馏流程
蒸馏本质是student对teacher的拟合,从teacher中汲取养分,学到知识,不仅仅可以用到模型压缩和加速中。蒸馏常见流程如下图所示
老师和学生可以是不同的网络结构,比如BERT蒸馏到BiLSTM网络。但一般相似网络结构,蒸馏效果会更好。
总体loss为 soft_label_loss + hard_label_loss。soft_label_loss可以用KL散度或MSE拟合
soft label为teacher模型的要拟合的对象。可以是predic输出,也可以是embeddings, 或者hidden layer和attention分布。
针对软标签的定义,蒸馏的方案也是百花齐放,下面分享两篇个人认为非常经典的文章。
1.4.2 distillBERT
DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter arxiv.org
distillBERT由大名鼎鼎的HuggingFace出品。主要创新点为:
Teacher 12层,student 6层,每两层去掉一层。比如student第二层对应teacher第三层 <li>Loss= 5.0 x Lce + 2.0 x Lmlm + 1.0 x Lcos, Lce: soft_label的KL散度 Lmlm: mask LM hard_label的交叉熵 Lcos:hidden state的余弦相似度</li>
DistilBERT 比 BERT 快 60%,体积比 BERT 小 60%。在glue任务上,保留了 95% 以上的性能。在performance损失很小的情况下,带来了较大的模型压缩和加速效果。
1.4.3 tinyBERT
TinyBERT: Distilling BERT for Natural Language Understanding arxiv.org
总体结构
重点来看下tinyBERT,它是由华为出品,非常值得深入研究。tinyBERT对embedding层,transformer层(包括hidden layer和attention),prediction层均进行了拟合。如下图
其中Embeddings采用MSE, Prediction采用KL散度, Transformer层的hidden layer和attention,均采用MSE。loss如下
其中m为层数。
效果分析
表2: glue任务上的performance。在glue任务上,可达到bert-base的96%,几乎无损失。表3: tinyBERT模型大小和推理速度。缩小7.5倍,加速9.4倍。压缩和加速效果十分明显。
消融分析
表6:分析embedding、prediction、attention、hidden layer软标签作用,其中attention和hidden layer作用最大。这个也很好理解,transformer层本来就是整个BERT中最关键的部分。
表7:分析老师学生不同层对应方法的效果,uniform为隔层对应,top为全部对应老师顶部几层,bottom为全部对应老师底部几层。Uniform效果明显好很多。这个也很好理解,浅层可以捕捉低阶特征,深层可以捕捉高阶特征。全是低阶或者高阶显然不合适,我们要尽量荤素搭配。
3 框架层加速
3.1 手机端AI能力
目前移动端AI框架也比较多,包括谷歌的tf-lite,腾讯的NCNN,阿里的MNN,百度的PaddleLite, 小米的MACE等。他们都不同程度的进行了模型压缩和加速的支持。特别是端上推理的加速。 手机端AI性能排名
3.2 端侧AI框架加速优化方法
个人总结的主要方法如下,可能有遗漏哈,各位看官请轻拍
基于基本的C++编译器优化
打开编译器的优化选项,选择O2等加速选项
小函数内联,概率大分支优先,避免除法,查表空间换时间,函数参数不超过4个等
利用C,而不是C++,C++有不少冗余的东西
缓存优化
小块内存反复使用,提升cache命中率,尽量减少内存申请。比如上一层计算完后,接着用作下一层计算
连续访问,内存连续访问有利于一次同时取数,相近位置cache命中概率更高。比如纵向访问数组时,可以考虑转置后变为横向访问
对齐访问,比如224 x 224的尺寸,补齐为256 x 224,从而提高缓存命中率
缓存预取,CPU计算的时候,preload后面的数据到cache中
多线程
为循环分配线程
动态调度,某个子循环过慢的时候,调度一部分循环到其他线程中
稀疏化
稀疏索引和存储方案,采用eigen的sparseMatrix方案
内存复用和提前申请
扫描整个网络,计算每层网络内存复用的情况下,最低的内存消耗。推理刚开始的时候就提前申请好。避免推理过程中反复申请和释放内存,避免推理过程中因为内存不足而失败,复用提升内存访问效率和cache命中率
ARM NEON指令的使用,和ARM的深度融合。NEON可以单指令多取值(SIMD),感兴趣可针对学习,这一块水也很深。
手工汇编,毕竟机器编译出来的代码还是有不少冗余的。可以针对运行频次特别高的代码进行手工汇编优化。当然如果你汇编功底惊天地泣鬼神的强,也可以全方位手工汇编。
算子支持:比如支持GPU加速,支持定点化等。有时候需要重新开发端侧的算子。
4 硬件层加速
硬件层加速小编就连半瓢水都达不到了,为了保证整个方案的全面性,还是硬着头皮东施效颦下。目前AI芯片厂家也是百花齐放,谁都想插一脚,不少互联网公司也来赶集。如下图所示
AI 芯片目前三种方案。GPU目前被英伟达和AMD牢牢把控。ASIC目前最火,TPU、NPU等属于ASIC范畴。
推荐阅读
机器学习算法工程师
以上是关于重磅!一文深入深度学习模型压缩和加速的主要内容,如果未能解决你的问题,请参考以下文章