操作系统-用户态内存映射(上)
Posted 技术小咖
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了操作系统-用户态内存映射(上)相关的知识,希望对你有一定的参考价值。
通过前面的章节,我们既了解了虚拟内存空间是如何组织的,也了解了物理页面是如何管理的。现在我们需要一些数据结构,将二者关联起来。
mmap的原理
struct mm_struct {
struct vm_area_struct *mmap; /* list of VMAs */
......
}
struct vm_area_struct {
/*
* For areas with an address space and backing store,
* linkage into the address_space->i_mmap interval tree.
*/
struct {
struct rb_node rb;
unsigned long rb_subtree_last;
} shared;
/*
* A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
* list, after a COW of one of the file pages. A MAP_SHARED vma
* can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
* or brk vma (with NULL file) can only be in an anon_vma list.
*/
struct list_head anon_vma_chain; /* Serialized by mmap_sem &
* page_table_lock */
struct anon_vma *anon_vma; /* Serialized by page_table_lock */
/* Function pointers to deal with this struct. */
const struct vm_operations_struct *vm_ops;
/* Information about our backing store: */
unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
units */
struct file * vm_file; /* File we map to (can be NULL). */
void * vm_private_data; /* was vm_pte (shared mem) */
其实内存映射不仅仅是物理内存和虚拟内存之间的映射,还包括将文件中的内容映射到虚拟内存空间。这个时候,访问内存空间就能够直接访问到文件里面的数据。如下图所示:
在申请堆内存的时候,如果我们要申请小块内存,就用 brk。如果申请一大块内存,就要用 mmap。对于堆的申请来讲,mmap 是映射内存空间到物理内存。
如果一个进程想映射一个文件到自己的虚拟内存空间,也要通过 mmap 系统调用。这个时候 mmap 是映射内存空间到物理内存再到文件。可见 mmap 这个系统调用是核心,我们现在来看 mmap 这个系统调用。
SYSCALL_DEFINE6(mmap, unsigned long, addr, unsigned long, len,
unsigned long, prot, unsigned long, flags,
unsigned long, fd, unsigned long, off)
{
......
error = sys_mmap_pgoff(addr, len, prot, flags, fd, off >> PAGE_SHIFT);
......
}
SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
unsigned long, prot, unsigned long, flags,
unsigned long, fd, unsigned long, pgoff)
{
struct file *file = NULL;
......
file = fget(fd);
......
retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
return retval;
}
如果要映射到文件,fd 会传进来一个文件描述符,并且 mmap_pgoff 里面通过 fget 函数,根据文件描述符获得 struct file。struct file 表示打开的一个文件。
接下来的调用链是 vm_mmap_pgoff->do_mmap_pgoff->do_mmap。这里面主要干了两件事情:
调用 get_unmapped_area 找到一个没有映射的区域;
调用 mmap_region 映射这个区域。
我们先来看 get_unmapped_area 函数。
unsigned long
get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
unsigned long pgoff, unsigned long flags)
{
unsigned long (*get_area)(struct file *, unsigned long,
unsigned long, unsigned long, unsigned long);
......
get_area = current->mm->get_unmapped_area;
if (file) {
if (file->f_op->get_unmapped_area)
get_area = file->f_op->get_unmapped_area;
}
......
}
这里面如果是匿名映射,则调用 mm_struct 里面的 get_unmapped_area 函数。这个函数其实是 arch_get_unmapped_area。它会调用 find_vma_prev,在表示虚拟内存区域的 vm_area_struct 红黑树上找到相应的位置。之所以叫 prev,是说这个时候虚拟内存区域还没有建立,找到前一个 vm_area_struct。
如果不是匿名映射,而是映射到一个文件,这样在 Linux 里面,每个打开的文件都有一个 struct file 结构,里面有一个 file_operations,用来表示和这个文件相关的操作。
我们再来看 mmap_region,看它如何映射这个虚拟内存区域。
unsigned long mmap_region(struct file *file, unsigned long addr,
unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
struct list_head *uf)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma, *prev;
struct rb_node **rb_link, *rb_parent;
/*
* Can we just expand an old mapping?
*/
vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
if (vma)
goto out;
/*
* Determine the object being mapped and call the appropriate
* specific mapper. the address has already been validated, but
* not unmapped, but the maps are removed from the list.
*/
vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
if (!vma) {
error = -ENOMEM;
goto unacct_error;
}
vma->vm_mm = mm;
vma->vm_start = addr;
vma->vm_end = addr + len;
vma->vm_flags = vm_flags;
vma->vm_page_prot = vm_get_page_prot(vm_flags);
vma->vm_pgoff = pgoff;
INIT_LIST_HEAD(&vma->anon_vma_chain);
if (file) {
vma->vm_file = get_file(file);
error = call_mmap(file, vma);
addr = vma->vm_start;
vm_flags = vma->vm_flags;
}
......
vma_link(mm, vma, prev, rb_link, rb_parent);
return addr;
.....
还记得咱们刚找到了虚拟内存区域的前一个 vm_area_struct,我们首先要看,是否能够基于它进行扩展,也即调用 vma_merge,和前一个 vm_area_struct 合并到一起。
如果不能,就需要调用 kmem_cache_zalloc,在 Slub 里面创建一个新的 vm_area_struct 对象,设置起始和结束位置,将它加入队列。如果是映射到文件,则设置 vm_file 为目标文件,调用 call_mmap。其实就是调用 file_operations 的 mmap 函数。对于 ext4 文件系统,调用的是 ext4_file_mmap。从这个函数的参数可以看出,这一刻文件和内存开始发生关系了。这里我们将 vm_area_struct 的内存操作设置为文件系统操作,也就是说,读写内存其实就是读写文件系统。
static inline int call_mmap(struct file *file, struct vm_area_struct *vma)
{
return file->f_op->mmap(file, vma);
}
static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
{
......
vma->vm_ops = &ext4_file_vm_ops;
......
}
我们再回到 mmap_region 函数。最终,vma_link 函数将新创建的 vm_area_struct 挂在了 mm_struct 里面的红黑树上。
这个时候,从内存到文件的映射关系,至少要在逻辑层面建立起来。那从文件到内存的映射关系呢?vma_link 还做了另外一件事情,就是 __vma_link_file。这个东西要用于建立这层映射关系。
对于打开的文件,会有一个结构 struct file 来表示。它有个成员指向 struct address_space 结构,这里面有棵变量名为 i_mmap 的红黑树,vm_area_struct 就挂在这棵树上。
struct address_space {
struct inode *host; /* owner: inode, block_device */
......
struct rb_root i_mmap; /* tree of private and shared mappings */
......
const struct address_space_operations *a_ops; /* methods */
......
}
static void __vma_link_file(struct vm_area_struct *vma)
{
struct file *file;
file = vma->vm_file;
if (file) {
struct address_space *mapping = file->f_mapping;
vma_interval_tree_insert(vma, &mapping->i_mmap);
}
以上是关于操作系统-用户态内存映射(上)的主要内容,如果未能解决你的问题,请参考以下文章