算法萌新如何学好动态规划(第一弹)

Posted 力扣加加

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了算法萌新如何学好动态规划(第一弹)相关的知识,希望对你有一定的参考价值。

下面开始今天的学习~

算法萌新如何学好动态规划(第一弹)

动态规划问题一直是大厂面试时最频繁出现的算法题,主要原因在于此类问题灵活度高,思维难度大,没有很明显的套路做法。

也正是因为这个原因,我们打算出一个「动态规划」系列文章来尝试破解面试中所涉及的动态规划问题。而本文就是这个系列的第一篇文章,主要目的是说明动态规划是什么,动态规划问题应该如何思考?

本文一共分成三个部分,具体内容框架如下所示:

算法萌新如何学好动态规划(第一弹)

算法萌新如何学好动态规划(第一弹)

宝石挑选

问题引入

小 Q 是一个宝石爱好者。

这一天,小 Q 来到了宝石古董店,店家觉得小 Q 是个宝石行家,于是决定和小 Q 玩一个游戏。

游戏是这样的,一共有 n 块宝石,每块宝石在小 Q 心中都有其对应的价值。注意,由于某些宝石质量过于差劲,因此存在只有店家倒贴钱,小 Q 才愿意带走的宝石,即价值可以为负数。

小 Q 可以免费带走一个连续区间中的宝石,比如区间 [1,3] 或区间 [2,4] 中的宝石。

请问小 Q 能带走的最大价值是多少?


问题分析

首先思考最暴力的解法。

枚举所有区间,暴力累加区间中宝石的价值,最后选一个价值最大的区间。时间复杂度 O(n^3)。

O(n^3) 显然有些无法接受,因此想想有没有办法优化,比如优化掉暴力累加的部分。

优化 1.0

仔细思考不难发现,我们可以枚举区间右端点,然后固定右端点,左端点不断向左移动,边移动边累加,就可以将时间复杂度优化到 O(n^2)。

例如我们固定右端点是 3,那么左端点就从 3 移动到 1,边移动边累加答案,就可以在移动过程中计算出区间 [3,3]、[2,3]、[1,3] 的答案了。因此枚举所有区间右端点,即可在 O(n^2) 时间复杂度内找到答案。

但是 O(n^2) 时间还是有些过高了,因此思考有没有办法继续优化呢?

优化 2.0

观察 O(n^2) 的解法,不难发现我们用了 O(n) 的时间复杂度才求出了固定某个点为区间右端点时,区间最大价值和。

例如固定了 n 为区间右端点后,我们通过从 n 到 1 枚举左端点,才求出了以 n 为区间右端点时的区间最大价值和,即 O(n) 的时间复杂度。

那么继续思考,「以 n 为区间右端点的区间最大和」,与「以 n - 1 为区间右端点的区间最大和」,这两者是否有关联呢?

为了描述方便,接下来我们用 f[i] 来代替「以 i 为区间右端点的区间最大和」,用  a[i] 来代替第 i 块宝石的价值。

不难发现,如果 f[n - 1] 为正数,则 f[n] 一定等于 f[n - 1] + a[n];如果 f[n - 1] 为负数,则 f[n] 一定等于 a[n]。因此我们可以推导出如下转移方程:

算法萌新如何学好动态规划(第一弹)

根据上述转移方程,我们可以在 O(n) 时间复杂度内求出最大的 f[i],即将此题时间复杂度优化到 O(n),而这个优化的过程就是「动态规划」的过程。

在上述推导过程中,一共分为两步:

1. 将整个问题划分为一个个子问题,并令 f[i] 为第 i 个子问题的答案

2. 思考大规模的子问题如何从小规模的子问题推导而来,即如何由 f[i - 1] 推出 f[i]

这两个步骤便是「动态规划」解题思路的核心所在,即确定动态规划时的「状态」与「转移方程」。

算法萌新如何学好动态规划(第一弹)

动态规划概述

动态规划(Dynamic Programming),因此常用 DP 指代动态规划。本块内容我们主要讲解「动态规划解题思路」与「动态规划问题类别」。

动态规划解题思路

动态规划主要分为两个核心部分,一是确定「DP 状态」,二是确定「DP 转移方程」。

DP 状态

「DP 状态」的确定主要有两大原则:

  1. 最优子结构
  2. 无后效性
最优子结构

我们仍以「宝石挑选」例题来讲解这两大原则,首先是「最优子结构」。

什么是「最优子结构」?将原有问题化分为一个个子问题,即为子结构。而对于每一个子问题,其最优值均由「更小规模的子问题的最优值」推导而来,即为最优子结构。

因此「DP 状态」设置之前,需要将原有问题划分为一个个子问题,且需要确保子问题的最优值由「更小规模子问题的最优值」推出,此时子问题的最优值即为「DP 状态」的定义。

例如在「宝石挑选」例题中,原有问题是「最大连续区间和」,子问题是「以 i 为右端点的连续区间和」。并且「以 i 为右端点的最大连续区间和」由「以 i - 1 为右端点的最大连续区间和」推出,此时后者即为更小规模的子问题,因此满足「最优子结构」原则。

由此我们才定义 DP 状态 f[i] 表示子问题的最优值,即「以 i 为右端点的最大连续区间和」。

无后效性

而对于「无后效性」,顾名思义,就是我们只关心子问题的最优值,不关心子问题的最优值是怎么得到的。

仍以「宝石挑选」例题为例,我们令 DP 状态 f[i] 表示「以 i 为右端点的最大连续区间和」,我们只关心「以 i 为右端点的区间」这个子问题的最优值,并不关心这个子问题的最优值是从哪个其它子问题转移而来。

即无论 f[i] 所表示区间的左端点是什么,都不会影响后续 f[i + 1] 的取值。影响 f[i + 1] 取值的只有 f[i] 的数值大小。

那怎样的状态定义算「有后效性」呢?

我们对「宝石挑选」例题增加一个限制,即小 Q 只能挑选长度 <= k 的连续区间。此时若我们定义 f[i] 表示「以 i 为右端点的长度 <= k 的最大连续区间和」,则 f[i + 1] 的取值不仅取决于 f[i] 的数值,还取决于 f[i] 是如何得到的。

因为如果 f[i] 取得最优值时区间长度 = k,则 f[i + 1] 不能从 f[i]  转移得到,即 f[i] 的状态定义有后效性。

最后概括一下,「最优子结构」就是「DP 状态最优值由更小规模的 DP 状态最优值推出」,此处 DP 状态即为子问题。而「无后效性」就是「无论 DP 状态是如何得到的,都不会影响后续 DP 状态的取值」。

DP 转移方程

有了「DP 状态」之后,我们只需要用「分类讨论」的思想来枚举所有小状态向大状态转移的可能性即可推出「DP 转移方程」。

我们继续以「宝石挑选」问题为例。

在我们定义「DP 状态」f[i] 之后,我们考虑状态 f[i] 如何从 f[1] ~ f[i - 1] 这些更小规模的状态转移而来。

仔细思考可以发现,由于 f[i] 表示的是连续区间的和,因此其取值只与 f[i - 1] 有关,与 f[1] ~ f[i - 2] 均无关。

我们再进一步思考,f[i] 取值只有两种情况,一是向左延伸,包含 f[i - 1],二是不向左延伸,仅包含 a[i],由此我们可以得到下述「DP 转移方程」:

算法萌新如何学好动态规划(第一弹)

注意,算法萌新如何学好动态规划(第一弹)

动态规划问题类别

讲述完 DP 问题的解题思路后,我们来大致列举一下 DP 问题的类别。

DP 问题主要分为两大类,第一大类是 DP 类型,第二大类是 DP 优化方法。

算法萌新如何学好动态规划(第一弹)

其中在 DP 类型部分,面试中最常考察的就是「线性 DP」,而在优化方法部分,最常见的是「RMQ 优化」,即使用线段树或其它数据结构查询区间最小值,来优化 DP 的转移过程。

算法萌新如何学好动态规划(第一弹)

习题练习

接下来我们以三道习题为例,来强化一下确定「DP 状态」和「DP 转移方程」的 DP 问题求解思路。

面试题 08.01. 三步问题

题目描述

三步问题。有个小孩正在上楼梯,楼梯有 n 阶台阶,小孩一次可以上 1 阶、2 阶或 3 阶。实现一种方法,计算小孩有多少种上楼梯的方式。结果可能很大,你需要对结果模 1000000007。

示例 1:

输入:n = 3 输出:4说明: 有四种走法
示例 2:

输入:n = 5输出:13

数据范围

n 范围在 [1, 1000000] 之间


解题思路

DP 问题思路主要就是确定「DP 状态」与「DP 转移方程」,因此我们首先考虑「DP 状态」。

「DP 状态」的确定有两大原则,一是「最优子结构」,二是「无后效性」,简要概括就是将原问题划分为多个子问题,且「大规模子问题最优值」仅与「小规模子问题最优值」有关,与「小规模子问题最优值」是如何得到的无关。

此题需要求出爬 n 阶楼梯的总方案数,因此很容易想到子问题是爬 i 阶楼梯的总方案数。接下来再进一步验证该状态是否符合「最优子结构」与「无后效性」两大原则。

令 f[i] 表示爬 i 阶楼梯的总方案数,原问题被划分为了多个求最优值的子问题,继续思考,不难发现小孩爬楼梯只有三种选项,一次上 1、2、3 阶,因此 f[i] 的值仅由 f[i - 1]、f[i - 2]、f[i - 3] 的值决定,因此符合「最优子结构」原则。

再进一步思考,f[i] 的取值与 f[i - 1]、f[i - 2]、f[i - 3] 的数值是如何得到的无关,因此符合「无后效性」原则。

确定完「DP 状态」后,我们再来确定「DP 转移方程」。

由于小孩只有三种爬楼选项,因此 f[i] 的值仅由 f[i - 3] ~ f[i - 1] 决定。且由于爬楼的最后一步不同,因此 f[i] 的值由 f[i - 3] ~ f[i - 1] 累加得到,即如下所示:

算法萌新如何学好动态规划(第一弹)

注意,f[1] = 1,且转移时需要注意 f[i - 1]、f[i - 2]、f[i - 3] 不要越界。

C++ 代码实现

class Solution {public: vector<int> f; int mod = 1000000007; int waysToStep(int n) { f.resize(n+1); f[0] = 1; for(int i = 1; i <= n; i++) { f[i] = f[i-1]; if(i >= 2) f[i] = (f[i] + f[i-2]) % mod; if(i >= 3) f[i] = (f[i] + f[i-3]) % mod; } return f[n]; }};


64. 最小路径和

题目描述

给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。

示例 1:

输入:[ [1,3,1], [1,5,1], [4,2,1]]输出: 7解释: 因为路径 13111 的总和最小。


解题思路

仍然是相同的解题思路,即依次确定「DP 状态」与「DP 转移方程」,且「DP 状态」的确定需要满足「最优子结构」与「无后效性」。

此题需要求出从左上角出发,到达坐标(m,n)的路径数字和最小值。因此不难想到,子问题就是从左上角出发,到达坐标(i,j)的路径数字和最小值。

令 f[i][j] 表示从左上角到坐标(i,j)的路径数字和最小值,原问题即可被划分为多个求最优值的子问题,且由于每次只能向下或向右移动一步,因此 f[i][j] 的取值由 f[i - 1][j] 和 f[i][j - 1] 的值决定,即符合「最优子结构原则」。

进一步验证,可以发现,f[i][j] 的取值与 f[i - 1][j] 和 f[i][j - 1] 所对应的具体路径无关,因此符合「无后效性」。

此处啰嗦一下。如果题目改为每次可以向上、下、左、右移动一步,且不能走重复的格子,则 f[i][j] 的值虽然与 f[i][j - 1]、f[i][j + 1]、f[i - 1][j]、f[i + 1][j] 的值有关,但由于「不能走重复的格子」这一限制,f[i][j - 1] ~ f[i + 1][j] 所对应的具体路径会影响到 f[i][j] 的取值,即不符合「无后效性」。

确定完「DP 状态」后,继续确定「DP 转移方程」。

由于只能向下或向右移动一步,且由于其最后一步不同,因此 f[i][j] 由 f[i - 1][j] 和 f[i][j - 1] 中的最小值转移得到,即如下所示:

算法萌新如何学好动态规划(第一弹)

注意,grid[i][j] 表示坐标(i,j)处的数字大小,f[1][1] = grid[1][1] ,转移时需要注意不要越界。

C++ 代码实现

class Solution {public: int minPathSum(vector<vector<int>>& grid) { for(int i = 0; i < grid.size(); i++) for(int j = 0; j < grid[0].size(); j++) { if(i == 0 && j == 0) continue; int tp = 1e9; if(i > 0) tp = min(tp, grid[i-1][j]); if(j > 0) tp = min(tp, grid[i][j-1]); grid[i][j] += tp; } return grid[grid.size()-1][grid[0].size()-1]; }};


152. 乘积最大子数组

题目描述

给你一个整数数组 nums ,请你找出数组中乘积最大的连续子数组(该子数组中至少包含一个数字),并返回该子数组所对应的乘积。

示例 1:

输入: [2,3,-2,4]输出: 6解释: 子数组 [2,3] 有最大乘积 6。


示例 2:

输入: [-2,0,-1]输出: 0解释: 结果不能为 2, 因为 [-2,-1] 不是子数组。


解题思路

继续采用相同的解题思路,即依次确定「DP 状态」与「DP 转移方程」,且「DP 状态」的确定需要满足「最优子结构」与「无后效性」。

此题其实是「宝石挑选」问题的进阶版,即连续区间最大乘积。因此与「宝石挑选」问题的思路一致,令 f[i] 表示以 i 为右端点的连续区间最大乘积,即可将原问题划分为多个求最优值的子问题,但这个状态定义是否符合「最优子结构」原则呢?

我们可以举一个例子来进一步思考。

例如给出 nums = [2,-1,-2],根据上述 f[i] 的定义,我们可以得到 f = [2,-1,4]。不难发现 算法萌新如何学好动态规划(第一弹) f[i] 的值与 f[i - 1] 的值无关,即 DP 状态最优值无法由更小规模的 DP 状态最优值推出,因此不符合「最优子结构」原则。

于是问题来了,怎样的状态定义才符合「最优子结构」呢?

继续思考可以发现,上述状态定义出错的原因主要在于如果 nums[i] 为负数,则 f[i - 1] * nums[i] 只会越乘越小。因此我们需要根据 nums[i] 的正负值进行分类讨论:

算法萌新如何学好动态规划(第一弹)

由此可以发现,我们需要引入新的「DP 状态」。令 maxn[i] 表示「以 i 为右端点的连续区间最大乘积」,minn[i] 表示「 以 i 为右端点的连续区间最小乘积」。

不难发现 maxn[i]、minn[i] 的取值由 maxn[i - 1] 、minn[i - 1] 的值推导而来,且与其具体的区间大小无关,因此同时满足「最优子结构」与「无后效性」原则。

最后我们再通过「分类讨论」即可确定如下「DP 转移方程」:

if(nums[i] > 0) { maxn[i] = max(nums[i], maxn[i - 1] * nums[i]); minn[i] = min(nums[i], minn[i - 1] * nums[i]);}else { maxn[i] = max(nums[i], minn[i - 1] * nums[i]); minn[i] = min(nums[i], maxn[i - 1] * nums[i]);}
总结一下,此题根据「最优子结构」原则否定了第一种状态定义。 否定之后进一步观察题目性质,得到了新的「DP 状态」,并通过「分类讨论」的方式推出「DP 转移方程」,使得本题得以圆满解决。

C++ 代码实现

class Solution {public: vector<int> maxn, minn; int maxProduct(vector<int>& nums) { int n = nums.size(), ans = nums[0]; maxn.resize(n); minn.resize(n); maxn[0] = minn[0] = nums[0]; for (int i = 1; i < nums.size(); ++i) { if(nums[i] > 0) { maxn[i] = max(nums[i], maxn[i - 1] * nums[i]); minn[i] = min(nums[i], minn[i - 1] * nums[i]); } else { maxn[i] = max(nums[i], minn[i - 1] * nums[i]); minn[i] = min(nums[i], maxn[i - 1] * nums[i]); } ans = max(ans, maxn[i]); } return ans; }};


算法萌新如何学好动态规划(第一弹)

总结

最后我们来总结一下 DP 问题的解题思路:

  • 确定「DP 状态」
    • 符合「最优子结构」原则:DP 状态最优值由更小规模的 DP 状态最优值推出
    • 符合「无后效性」原则:状态的得到方式,不会影响后续其它 DP 状态取值
  • 确定「DP 转移方程」
    • 分类讨论,细心枚举

最后的最后,希望大家在求解 DP 问题时可以参考上述解题思路,祝大家刷题愉快!


BY / 
本文作者:Gene_Liu
编辑&版式:霍霍
声明:本文归 “力扣” 版权所有,如需转载请联系。文章封面图来源于网络,如有侵权联系删除。

推荐阅读

1、

2、

3、

4、

5、



如果觉得文章不错,帮忙点个在看呗



以上是关于算法萌新如何学好动态规划(第一弹)的主要内容,如果未能解决你的问题,请参考以下文章

学好动态规划三步曲

1$答疑讲堂 | 令狐冲现场剖析如何学好动态规划,为你解答疑惑

前端程序员学好算法系列动态规划

9大背包第一弹 | 01背包

动态规划经典教学题,上过《算导》的应该都会

背包问题——是动态规划还是贪心算法?