分布式缓存击穿(布隆过滤器 Bloom Filter)

Posted 编程无界

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了分布式缓存击穿(布隆过滤器 Bloom Filter)相关的知识,希望对你有一定的参考价值。

带你征服编程和泡妞两座大山


通常情况下,缓存是加速系统响应的一种途径,通常情况下只有系统的部分数据。当请求了缓存中没有的数据时,这时候就会回源到DB里面。此时如果黑客故意对上面数据发起大量请求,则DB有可能会挂掉,这就是缓存击穿。当然缓存挂掉的话,正常的用户请求也有可能造成缓存击穿的效果。


缓存中无值(未宕机)

互斥锁

我们最先想到的应该是加锁获取缓存。也就是当获取的value值为空时(这里的空表示缓存过期),先加锁,然后从数据库加载并放入缓存,最后释放锁。如果其他线程获取锁失败,则睡眠一段时间后重试。下面使用Redis的setnx来实现分布式锁,如下所示:

String get(String key) {
   String value = redis.get(key);  
    if (value  == null) {  
        if (redis.setnx(key_mutex, "1")) {  
            // 3 min timeout to avoid mutex holder crash              redis.expire(key_mutex, 3 * 60)  
            value = db.get(key);  
            redis.set(key, value);  
            redis.delete(key_mutex);  
        } else {  
            //其他线程休息50毫秒后重试              Thread.sleep(50);
            get(key);
        }
    }  
}


缓存永不过期

缓存永不过期的意思是:真正的缓存过期时间不有Redis控制,而是由程序代码控制。当获取数据时发现数据超时时,就需要发起一个异步请求去加载数据。这种策略的有点就是不会产生死锁等现象,但是有可能会造成缓存不一致的现象,但是笔者看来一般情况下都是可以适用的。

String get(final String key) {
    V v = redis.get(key);
    String value = v.getValue();
    long timeout = v.getTimeout();
    if (v.timeout <= System.currentTimeMillis()) {
        // 异步更新后台异常执行        threadPool.execute(new Runnable() {
            public void run() {
                String keyMutex = "mutex:" + key;
                if (redis.setnx(keyMutex, "1")) {
                    // 3 min timeout to avoid mutex holder crash                    redis.expire(keyMutex, 3 * 60);
                    String dbValue = db.get(key);
                    redis.set(key, dbValue);
                    redis.delete(keyMutex);
                }
            }
        });
    }
    return value;
}


缓存宕机

上面说到的场景是缓存依旧有效的,当Redis挂掉时,这个时候如何来应对大量的回源请求呢?先来说一种简单的方式:白名单

白名单

白名单顾名思义就是:在缓存宕机之前的一段时间里,会将请求的数据在系统中的有无,记录在一个Map中。当缓存宕机后,首先在Map中判断是否含有数据,有则回源DB,没有的话就直接返回结果。

这种方式实现起来比较简单(Demo就不提供了),但是占用的内存空间比较庞大。如一个value是10字节,那么要存储大小为1亿的Map时,其所需的内存大小大约是:10 * 2 * 10e8 = 2G(假设Map的利用率为50%)。由此可见其对于一种类型的数据判断就需要一个 2G 的Map去操作,这种方式就不可行了。

布隆过滤器

布隆过滤器(Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难。

如果想判断一个元素是不是在一个集合里,一般想到的是将集合中所有元素保存起来,然后通过比较确定。链表、树、散列表(又叫哈希表,Hash table)等等数据结构都是这种思路。但是随着集合中元素的增加,我们需要的存储空间越来越大。同时检索速度也越来越慢,上述三种结构的检索时间复杂度分别为:O(n), O(log n), O(n/k)。

布隆过滤器的原理是,当一个元素被加入集合时,通过K个Hash函数将这个元素映射成一个位数组中的K个点,把它们置为1。检索时,我们只要看看这些点是不是都是1就(大约)知道集合中有没有它了:如果这些点有任何一个0,则被检元素一定不在;如果都是1,则被检元素很可能在。这就是布隆过滤器的基本思想。

代码实现

在实际应用当中,我们不需要自己去实现BloomFilter。可以使用Guava提供的相关类库即可。

<dependency>    <groupId>com.google.guava</groupId>    <artifactId>guava</artifactId>    <version>25.1-jre</version></dependency>


判断一个元素是否在集合中

public class Test1 {    private static int size = 1000000;

    private static BloomFilter<Integer> bloomFilter = BloomFilter.create(Funnels.integerFunnel(), size);

    public static void main(String[] args) {
        for (int i = 0; i < size; i++) {
            bloomFilter.put(i);
        }

        long startTime = System.nanoTime(); // 获取开始时间        //判断这一百万个数中是否包含29999这个数        if (bloomFilter.mightContain(29999)) {
            System.out.println("命中了");
        }
        long endTime = System.nanoTime();   // 获取结束时间        System.out.println("程序运行时间: " + (endTime - startTime) + "纳秒");
    }

}


运行结果如下:

命中了
程序运行时间: 441616纳秒


自定义错误率

public class Test3 {    private static int size = 1000000;

    private static BloomFilter<Integer> bloomFilter = BloomFilter.create(Funnels.integerFunnel(), size, 0.01);

    public static void main(String[] args) {
        for (int i = 0; i < size; i++) {
            bloomFilter.put(i);
        }
        List<Integer> list = new ArrayList<Integer>(1000);
        // 故意取10000个不在过滤器里的值,看看有多少个会被认为在过滤器里        for (int i = size + 10000; i < size + 20000; i++) {
            if (bloomFilter.mightContain(i)) {
                list.add(i);
            }
        }
        System.out.println("误判的数量:" + list.size());
    }

}


运行结果如下:

误判的数量:94


对于缓存宕机的场景,使用白名单或者布隆过滤器都有可能会造成一定程度的误判。原因是除了Bloom Filter 本身有误判率,宕机之前的缓存不一定能覆盖到所有DB中的数据,当宕机后用户请求了一个以前从未请求的数据,这个时候就会产生误判。当然,缓存宕机时使用白名单/布隆过滤器作为应急的方式,这种情况应该也是可以忍受的。


以上是关于分布式缓存击穿(布隆过滤器 Bloom Filter)的主要内容,如果未能解决你的问题,请参考以下文章

硬核 | Redis 布隆(Bloom Filter)过滤器原理与实战

Redis缓存雪崩缓存穿透缓存击穿

REDIS12_缓存雪崩缓存穿透基于布隆过滤器解决缓存穿透的问题缓存击穿基于缓存击穿工作实际案例

REDIS12_缓存雪崩缓存穿透基于布隆过滤器解决缓存穿透的问题缓存击穿基于缓存击穿工作实际案例

REDIS08_缓存雪崩缓存穿透基于布隆过滤器解决缓存穿透的问题缓存击穿基于缓存击穿工作实际案例

布隆过滤器(Bloom Filter)从入门到出土