算法---hash算法原理(java中HashMap底层实现原理和源码解析)
Posted 青城博雅教育科技
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了算法---hash算法原理(java中HashMap底层实现原理和源码解析)相关的知识,希望对你有一定的参考价值。
散列表(Hash table,也叫哈希表),是依据关键码值(Key value)而直接进行訪问的数据结构。也就是说,它通过把关键码值映射到表中一个位置来訪问记录,以加快查找的速度。这个映射函数叫做散列函数,存放记录的数组叫做散列表。
解决冲突是一个复杂问题。冲突主要取决于:
(1)散列函数,一个好的散列函数的值应尽可能平均分布。
(2)处理冲突方法。
(3)负载因子的大小。太大不一定就好,并且浪费空间严重,负载因子和散列函数是联动的。
解决冲突的办法:
(1)线性探查法:冲突后,线性向前试探,找到近期的一个空位置。缺点是会出现堆积现象。存取时,可能不是同义词的词也位于探查序列,影响效率。
(2)双散列函数法:在位置d冲突后,再次使用还有一个散列函数产生一个与散列表桶容量m互质的数c,依次试探(d+n*c)%m,使探查序列跳跃式分布。
影响产生冲突多少有下面三个因素:
1. 散列函数是否均匀;
2. 处理冲突的方法;
3. 散列表的装填因子。
散列表的装填因子定义为:α= 填入表中的元素个数 / 散列表的长度
α是散列表装满程度的标志因子。因为表长是定值,α与“填入表中的元素个数”成正比,所以,α越大,填入表中的元素较多,产生冲突的可能性就越大;α越小,填入表中的元素较少,产生冲突的可能性就越小。
HashMap数组 (JDK8以前使用拉链法,JDK8以后使用红黑树)
在Java编程语言中,最基本的结构就是两种,一种是数组,一种是模拟指针(引用),所有的数据结构都可以用这两个基本结构构造,HashMap也一样。当程序试图将多个 key-value 放入 HashMap 中时,以如下代码片段为例:
HashMap 采用一种所谓的“Hash 算法”来决定每个元素的存储位置。当程序执行 map.put(String,Obect)方法 时,系统将调用String的 hashCode() 方法得到其 hashCode 值——每个 Java 对象都有 hashCode() 方法,都可通过该方法获得它的 hashCode 值。得到这个对象的 hashCode 值之后,系统会根据该 hashCode 值来决定该元素的存储位置。源码如下:
上面程序中用到了一个重要的内部接口:Map.Entry,每个 Map.Entry 其实就是一个 key-value 对。从上面程序中可以看出:当系统决定存储 HashMap 中的 key-value 对时,完全没有考虑 Entry 中的 value,仅仅只是根据 key 来计算并决定每个 Entry 的存储位置。这也说明了前面的结论:我们完全可以把 Map 集合中的 value 当成 key 的附属,当系统决定了 key 的存储位置之后,value 随之保存在那里即可.HashMap程序经过我改造,我故意的构造出了hash冲突现象,因为HashMap的初始大小16,但是我在hashmap里面放了超过16个元素,并且我屏蔽了它的resize()方法。不让它去扩容。这时HashMap的底层数组Entry[] table结构如下:
上面方法的代码很简单,但其中包含了一个设计:系统总是将新添加的 Entry 对象放入 table 数组的 bucketIndex 索引处——如果 bucketIndex 索引处已经有了一个 Entry 对象,那新添加的 Entry 对象指向原有的 Entry 对象(产生一个 Entry 链),如果 bucketIndex 索引处没有 Entry 对象,也就是上面程序代码的 e 变量是 null,也就是新放入的 Entry 对象指向 null,也就是没有产生 Entry 链。
HashMap里面没有出现hash冲突时,没有形成单链表时,hashmap查找元素很快,get()方法能够直接定位到元素,但是出现单链表后,单个bucket 里存储的不是一个 Entry,而是一个 Entry 链,系统只能必须按顺序遍历每个 Entry,直到找到想搜索的 Entry 为止——如果恰好要搜索的 Entry 位于该 Entry 链的最末端(该 Entry 是最早放入该 bucket 中),那系统必须循环到最后才能找到该元素。
当创建 HashMap 时,有一个默认的负载因子(load factor),其默认值为 0.75,这是时间和空间成本上一种折衷:增大负载因子可以减少 Hash 表(就是那个 Entry 数组)所占用的内存空间,但会增加查询数据的时间开销,而查询是最频繁的的操作(HashMap 的 get() 与 put() 方法都要用到查询);减小负载因子会提高数据查询的性能,但会增加 Hash 表所占用的内存空间。
三、HashMap源码分析
1、关键属性
先看看HashMap类中的一些关键属性:
2、构造方法
下面看看HashMap的几个构造方法:
我们可以看到在构造HashMap的时候如果我们指定了加载因子和初始容量的话就调用第一个构造方法,否则的话就是用默认的。默认初始容量为16,默认加载因子为0.75。我们可以看到上面代码中13-15行,这段代码的作用是确保容量为2的n次幂,使capacity为大于initialCapacity的最小的2的n次幂,至于为什么要把容量设置为2的n次幂,我们等下再看。
重点分析下HashMap中用的最多的两个方法put和get
3、存储数据
下面看看HashMap存储数据的过程是怎样的,首先看看HashMap的put方法:
上面程序中用到了一个重要的内部接口:Map.Entry,每个 Map.Entry 其实就是一个 key-value 对。从上面程序中可以看出:当系统决定存储 HashMap 中的 key-value 对时,完全没有考虑 Entry 中的 value,仅仅只是根据 key 来计算并决定每个 Entry 的存储位置。这也说明了前面的结论:我们完全可以把 Map 集合中的 value 当成 key 的附属,当系统决定了 key 的存储位置之后,value 随之保存在那里即可。
我们慢慢的来分析这个函数,第2和3行的作用就是处理key值为null的情况,我们看看putForNullKey(value)方法:
注意:如果key为null的话,hash值为0,对象存储在数组中索引为0的位置。即table[0]
我们再回去看看put方法中第4行,它是通过key的hashCode值计算hash码,下面是计算hash码的函数:
得到hash码之后就会通过hash码去计算出应该存储在数组中的索引,计算索引的函数如下:
这个我们要重点说下,我们一般对哈希表的散列很自然地会想到用hash值对length取模(即除法散列法),Hashtable中也是这样实现的,这种方法基本能保证元素在哈希表中散列的比较均匀,但取模会用到除法运算,效率很低,HashMap中则通过h&(length-1)的方法来代替取模,同样实现了均匀的散列,但效率要高很多,这也是HashMap对Hashtable的一个改进。
接下来,我们分析下为什么哈希表的容量一定要是2的整数次幂。首先,length为2的整数次幂的话,h&(length-1)就相当于对length取模,这样便保证了散列的均匀,同时也提升了效率;其次,length为2的整数次幂的话,为偶数,这样length-1为奇数,奇数的最后一位是1,这样便保证了h&(length-1)的最后一位可能为0,也可能为1(这取决于h的值),即与后的结果可能为偶数,也可能为奇数,这样便可以保证散列的均匀性,而如果length为奇数的话,很明显length-1为偶数,它的最后一位是0,这样h&(length-1)的最后一位肯定为0,即只能为偶数,这样任何hash值都只会被散列到数组的偶数下标位置上,这便浪费了近一半的空间,因此,length取2的整数次幂,是为了使不同hash值发生碰撞的概率较小,这样就能使元素在哈希表中均匀地散列。
根据上面 put 方法的源代码可以看出,当程序试图将一个key-value对放入HashMap中时,程序首先根据该 key 的 hashCode() 返回值决定该 Entry 的存储位置:如果两个 Entry 的 key 的 hashCode() 返回值相同,那它们的存储位置相同。如果这两个 Entry 的 key 通过 equals 比较返回 true,新添加 Entry 的 value 将覆盖集合中原有 Entry 的 value,但key不会覆盖。如果这两个 Entry 的 key 通过 equals 比较返回 false,新添加的 Entry 将与集合中原有 Entry 形成 Entry 链,而且新添加的 Entry 位于 Entry 链的头部——具体说明继续看 addEntry() 方法的说明。
参数bucketIndex就是indexFor函数计算出来的索引值,第2行代码是取得数组中索引为bucketIndex的Entry对象,第3行就是用hash、key、value构建一个新的Entry对象放到索引为bucketIndex的位置,并且将该位置原先的对象设置为新对象的next构成链表。
第4行和第5行就是判断put后size是否达到了临界值threshold,如果达到了临界值就要进行扩容,HashMap扩容是扩为原来的两倍。
4、调整大小
resize()方法如下:
重新调整HashMap的大小,newCapacity是调整后的单位
新建了一个HashMap的底层数组,上面代码中第10行为调用transfer方法,将HashMap的全部元素添加到新的HashMap中,并重新计算元素在新的数组中的索引位置
当HashMap中的元素越来越多的时候,hash冲突的几率也就越来越高,因为数组的长度是固定的。所以为了提高查询的效率,就要对HashMap的数组进行扩容,数组扩容这个操作也会出现在ArrayList中,这是一个常用的操作,而在HashMap数组扩容之后,最消耗性能的点就出现了:原数组中的数据必须重新计算其在新数组中的位置,并放进去,这就是resize。
那么HashMap什么时候进行扩容呢?当HashMap中的元素个数超过数组大小*loadFactor时,就会进行数组扩容,loadFactor的默认值为0.75,这是一个折中的取值。也就是说,默认情况下,数组大小为16,那么当HashMap中元素个数超过16*0.75=12的时候,就把数组的大小扩展为 2*16=32,即扩大一倍,然后重新计算每个元素在数组中的位置,扩容是需要进行数组复制的,复制数组是非常消耗性能的操作,所以如果我们已经预知HashMap中元素的个数,那么预设元素的个数能够有效的提高HashMap的性能。
5、数据读取
有了上面存储时的hash算法作为基础,理解起来这段代码就很容易了。从上面的源代码中可以看出:从HashMap中get元素时,首先计算key的hashCode,找到数组中对应位置的某一元素,然后通过key的equals方法在对应位置的链表中找到需要的元素。
6、HashMap的性能参数:
HashMap 包含如下几个构造器:
HashMap():构建一个初始容量为 16,负载因子为 0.75 的 HashMap。
HashMap(int initialCapacity):构建一个初始容量为 initialCapacity,负载因子为 0.75 的 HashMap。
HashMap(int initialCapacity, float loadFactor):以指定初始容量、指定的负载因子创建一个 HashMap。
HashMap的基础构造器HashMap(int initialCapacity, float loadFactor)带有两个参数,它们是初始容量initialCapacity和加载因子loadFactor。
initialCapacity:HashMap的最大容量,即为底层数组的长度。
loadFactor:负载因子loadFactor定义为:散列表的实际元素数目(n)/ 散列表的容量(m)。
负载因子衡量的是一个散列表的空间的使用程度,负载因子越大表示散列表的装填程度越高,反之愈小。对于使用链表法的散列表来说,查找一个元素的平均时间是O(1+a),因此如果负载因子越大,对空间的利用更充分,然而后果是查找效率的降低;如果负载因子太小,那么散列表的数据将过于稀疏,对空间造成严重浪费。
HashMap的实现中,通过threshold字段来判断HashMap的最大容量:
结合负载因子的定义公式可知,threshold就是在此loadFactor和capacity对应下允许的最大元素数目,超过这个数目就重新resize,以降低实际的负载因子。默认的的负载因子0.75是对空间和时间效率的一个平衡选择。当容量超出此最大容量时, resize后的HashMap容量是容量的两倍
JDK8新增的红黑树:
HashMap 在 JDK 1.8 中新增的操作:桶的树形化 treeifyBin()
在Java 8 中,如果一个桶中的元素个数超过 TREEIFY_THRESHOLD(默认是 8 ),就使用红黑树来替换链表,从而提高速度。
这个替换的方法叫 treeifyBin() 即树形化。
以上是关于算法---hash算法原理(java中HashMap底层实现原理和源码解析)的主要内容,如果未能解决你的问题,请参考以下文章