并发编程解惑之线程
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了并发编程解惑之线程相关的知识,希望对你有一定的参考价值。
参考技术A主要内容:
进程是资源分配的最小单位,每个进程都有独立的代码和数据空间,一个进程包含 1 到 n 个线程。线程是 CPU 调度的最小单位,每个线程有独立的运行栈和程序计数器,线程切换开销小。
Java 程序总是从主类的 main 方法开始执行,main 方法就是 Java 程序默认的主线程,而在 main 方法中再创建的线程就是其他线程。在 Java 中,每次程序启动至少启动 2 个线程。一个是 main 线程,一个是垃圾收集线程。每次使用 Java 命令启动一个 Java 程序,就相当于启动一个 JVM 实例,而每个 JVM 实例就是在操作系统中启动的一个进程。
多线程可以通过继承或实现接口的方式创建。
Thread 类是 JDK 中定义的用于控制线程对象的类,该类中封装了线程执行体 run() 方法。需要强调的一点是,线程执行先后与创建顺序无关。
通过 Runnable 方式创建线程相比通过继承 Thread 类创建线程的优势是避免了单继承的局限性。若一个 boy 类继承了 person 类,boy 类就无法通过继承 Thread 类的方式来实现多线程。
使用 Runnable 接口创建线程的过程:先是创建对象实例 MyRunnable,然后将对象 My Runnable 作为 Thread 构造方法的入参,来构造出线程。对于 new Thread(Runnable target) 创建的使用同一入参目标对象的线程,可以共享该入参目标对象 MyRunnable 的成员变量和方法,但 run() 方法中的局部变量相互独立,互不干扰。
上面代码是 new 了三个不同的 My Runnable 对象,如果只想使用同一个对象,可以只 new 一个 MyRunnable 对象给三个 new Thread 使用。
实现 Runnable 接口比继承 Thread 类所具有的优势:
线程有新建、可运行、阻塞、等待、定时等待、死亡 6 种状态。一个具有生命的线程,总是处于这 6 种状态之一。 每个线程可以独立于其他线程运行,也可和其他线程协同运行。线程被创建后,调用 start() 方法启动线程,该线程便从新建态进入就绪状态。
NEW 状态(新建状态) 实例化一个线程之后,并且这个线程没有开始执行,这个时候的状态就是 NEW 状态:
RUNNABLE 状态(就绪状态):
阻塞状态有 3 种:
如果一个线程调用了一个对象的 wait 方法, 那么这个线程就会处于等待状态(waiting 状态)直到另外一个线程调用这个对象的 notify 或者 notifyAll 方法后才会解除这个状态。
run() 里的代码执行完毕后,线程进入终结状态(TERMINATED 状态)。
线程状态有 6 种:新建、可运行、阻塞、等待、定时等待、死亡。
我们看下 join 方法的使用:
运行结果:
我们来看下 yield 方法的使用:
运行结果:
线程与线程之间是无法直接通信的,A 线程无法直接通知 B 线程,Java 中线程之间交换信息是通过共享的内存来实现的,控制共享资源的读写的访问,使得多个线程轮流执行对共享数据的操作,线程之间通信是通过对共享资源上锁或释放锁来实现的。线程排队轮流执行共享资源,这称为线程的同步。
Java 提供了很多同步操作(也就是线程间的通信方式),同步可使用 synchronized 关键字、Object 类的 wait/notifyAll 方法、ReentrantLock 锁、无锁同步 CAS 等方式来实现。
ReentrantLock 是 JDK 内置的一个锁对象,用于线程同步(线程通信),需要用户手动释放锁。
运行结果:
这表明同一时间段只能有 1 个线程执行 work 方法,因为 work 方法里的代码需要获取到锁才能执行,这就实现了多个线程间的通信,线程 0 获取锁,先执行,线程 1 等待,线程 0 释放锁,线程 1 继续执行。
synchronized 是一种语法级别的同步方式,称为内置锁。该锁会在代码执行完毕后由 JVM 释放。
输出结果跟 ReentrantLock 一样。
Java 中的 Object 类默认是所有类的父类,该类拥有 wait、 notify、notifyAll 方法,其他对象会自动继承 Object 类,可调用 Object 类的这些方法实现线程间的通信。
除了可以通过锁的方式来实现通信,还可通过无锁的方式来实现,无锁同 CAS(Compare-and-Swap,比较和交换)的实现,需要有 3 个操作数:内存地址 V,旧的预期值 A,即将要更新的目标值 B,当且仅当内存地址 V 的值与预期值 A 相等时,将内存地址 V 的值修改为目标值 B,否则就什么都不做。
我们通过计算器的案例来演示无锁同步 CAS 的实现方式,非线程安全的计数方式如下:
线程安全的计数方式如下:
运行结果:
线程安全累加的结果才是正确的,非线程安全会出现少计算值的情况。JDK 1.5 开始,并发包里提供了原子操作的类,AtomicBoolean 用原子方式更新的 boolean 值,AtomicInteger 用原子方式更新 int 值,AtomicLong 用原子方式更新 long 值。 AtomicInteger 和 AtomicLong 还提供了用原子方式将当前值自增 1 或自减 1 的方法,在多线程程序中,诸如 ++i 或 i++ 等运算不具有原子性,是不安全的线程操作之一。 通常我们使用 synchronized 将该操作变成一个原子操作,但 JVM 为此种操作提供了原子操作的同步类 Atomic,使用 AtomicInteger 做自增运算的性能是 ReentantLock 的好几倍。
上面我们都是使用底层的方式实现线程间的通信的,但在实际的开发中,我们应该尽量远离底层结构,使用封装好的 API,例如 J.U.C 包(java.util.concurrent,又称并发包)下的工具类 CountDownLath、CyclicBarrier、Semaphore,来实现线程通信,协调线程执行。
CountDownLatch 能够实现线程之间的等待,CountDownLatch 用于某一个线程等待若干个其他线程执行完任务之后,它才开始执行。
CountDownLatch 类只提供了一个构造器:
CountDownLatch 类中常用的 3 个方法:
运行结果:
CyclicBarrier 字面意思循环栅栏,通过它可以让一组线程等待至某个状态之后再全部同时执行。当所有等待线程都被释放以后,CyclicBarrier 可以被重复使用,所以有循环之意。
相比 CountDownLatch,CyclicBarrier 可以被循环使用,而且如果遇到线程中断等情况时,可以利用 reset() 方法,重置计数器,CyclicBarrier 会比 CountDownLatch 更加灵活。
CyclicBarrier 提供 2 个构造器:
上面的方法中,参数 parties 指让多少个线程或者任务等待至 barrier 状态;参数 barrierAction 为当这些线程都达到 barrier 状态时会执行的内容。
CyclicBarrier 中最重要的方法 await 方法,它有 2 个重载版本。下面方法用来挂起当前线程,直至所有线程都到达 barrier 状态再同时执行后续任务。
而下面的方法则是让这些线程等待至一定的时间,如果还有线程没有到达 barrier 状态就直接让到达 barrier 的线程执行任务。
运行结果:
CyclicBarrier 用于一组线程互相等待至某个状态,然后这一组线程再同时执行,CountDownLatch 是不能重用的,而 CyclicBarrier 可以重用。
Semaphore 类是一个计数信号量,它可以设定一个阈值,多个线程竞争获取许可信号,执行完任务后归还,超过阈值后,线程申请许可信号时将会被阻塞。Semaphore 可以用来 构建对象池,资源池,比如数据库连接池。
假如在服务器上运行着若干个客户端请求的线程。这些线程需要连接到同一数据库,但任一时刻只能获得一定数目的数据库连接。要怎样才能够有效地将这些固定数目的数据库连接分配给大量的线程呢?
给方法加同步锁,保证同一时刻只能有一个线程去调用此方法,其他所有线程排队等待,但若有 10 个数据库连接,也只有一个能被使用,效率太低。另外一种方法,使用信号量,让信号量许可与数据库可用连接数为相同数量,10 个数据库连接都能被使用,大大提高性能。
上面三个工具类是 J.U.C 包的核心类,J.U.C 包的全景图就比较复杂了:
J.U.C 包(java.util.concurrent)中的高层类(Lock、同步器、阻塞队列、Executor、并发容器)依赖基础类(AQS、非阻塞数据结构、原子变量类),而基础类是通过 CAS 和 volatile 来实现的。我们尽量使用顶层的类,避免使用基础类 CAS 和 volatile 来协调线程的执行。J.U.C 包其他的内容,在其他的篇章会有相应的讲解。
Future 是一种异步执行的设计模式,类似 ajax 异步请求,不需要同步等待返回结果,可继续执行代码。使 Runnable(无返回值不支持上报异常)或 Callable(有返回值支持上报异常)均可开启线程执行任务。但是如果需要异步获取线程的返回结果,就需要通过 Future 来实现了。
Future 是位于 java.util.concurrent 包下的一个接口,Future 接口封装了取消任务,获取任务结果的方法。
在 Java 中,一般是通过继承 Thread 类或者实现 Runnable 接口来创建多线程, Runnable 接口不能返回结果,JDK 1.5 之后,Java 提供了 Callable 接口来封装子任务,Callable 接口可以获取返回结果。我们使用线程池提交 Callable 接口任务,将返回 Future 接口添加进 ArrayList 数组,最后遍历 FutureList,实现异步获取返回值。
运行结果:
上面就是异步线程执行的调用过程,实际开发中用得更多的是使用现成的异步框架来实现异步编程,如 RxJava,有兴趣的可以继续去了解,通常异步框架都是结合远程 HTTP 调用 Retrofit 框架来使用的,两者结合起来用,可以避免调用远程接口时,花费过多的时间在等待接口返回上。
线程封闭是通过本地线程 ThreadLocal 来实现的,ThreadLocal 是线程局部变量(local vari able),它为每个线程都提供一个变量值的副本,每个线程对该变量副本的修改相互不影响。
在 JVM 虚拟机中,堆内存用于存储共享的数据(实例对象),也就是主内存。Thread Local .set()、ThreadLocal.get() 方法直接在本地内存(工作内存)中写和读共享变量的副本,而不需要同步数据,不用像 synchronized 那样保证数据可见性,修改主内存数据后还要同步更新到工作内存。
Myabatis、hibernate 是通过 threadlocal 来存储 session 的,每一个线程都维护着一个 session,对线程独享的资源操作很方便,也避免了线程阻塞。
ThreadLocal 类位于 Thread 线程类内部,我们分析下它的源码:
ThreadLocal 和 Synchonized 都用于解决多线程并发访问的问题,访问多线程共享的资源时,Synchronized 同步机制采用了以时间换空间的方式,提供一份变量让多个线程排队访问,而 ThreadLocal 采用了以空间换时间的方式,提供每个线程一个变量,实现数据隔离。
ThreadLocal 可用于数据库连接 Connection 对象的隔离,使得每个请求线程都可以复用连接而又相互不影响。
在 Java 里面,存在强引用、弱引用、软引用、虚引用。我们主要来了解下强引用和弱引用:
上面 a、b 对实例 A、B 都是强引用
而上面这种情况就不一样了,即使 b 被置为 null,但是 c 仍然持有对 C 对象实例的引用,而间接的保持着对 b 的强引用,所以 GC 不会回收分配给 b 的空间,导致 b 无法回收也没有被使用,造成了内存泄漏。这时可以通过 c = null; 来使得 c 被回收,但也可以通过弱引用来达到同样目的:
从源码中可以看出 Entry 里的 key 对 ThreadLocal 实例是弱引用:
Entry 里的 key 对 ThreadLocal 实例是弱引用,将 key 值置为 null,堆中的 ThreadLocal 实例是可以被垃圾收集器(GC)回收的。但是 value 却存在一条从 Current Thread 过来的强引用链,只有当当前线程 Current Thread 销毁时,value 才能被回收。在 threadLocal 被设为 null 以及线程结束之前,Entry 的键值对都不会被回收,出现内存泄漏。为了避免泄漏,在 ThreadLocalMap 中的 set/get Entry 方法里,会对 key 为 null 的情况进行判断,如果为 null 的话,就会对 value 置为 null。也可以通过 ThreadLocal 的 remove 方法(类似加锁和解锁,最后 remove 一下,解锁对象的引用)直接清除,释放内存空间。
总结来说,利用 ThreadLocal 来访问共享数据时,JVM 通过设置 ThreadLocalMap 的 Key 为弱引用,来避免内存泄露,同时通过调用 remove、get、set 方法的时候,回收弱引用(Key 为 null 的 Entry)。当使用 static ThreadLocal 的时候(如上面的 Spring 多数据源),static 变量在类未加载的时候,它就已经加载,当线程结束的时候,static 变量不一定会被回收,比起普通成员变量使用的时候才加载,static 的生命周期变长了,若没有及时回收,容易产生内存泄漏。
使用线程池,可以重用存在的线程,减少对象创建、消亡的开销,可控制最大并发线程数,避免资源竞争过度,还能实现线程定时执行、单线程执行、固定线程数执行等功能。
Java 把线程的调用封装成了一个 Executor 接口,Executor 接口中定义了一个 execute 方法,用来提交线程的执行。Executor 接口的子接口是 ExecutorService,负责管理线程的执行。通过 Executors 类的静态方法可以初始化
ExecutorService 线程池。Executors 类的静态方法可创建不同类型的线程池:
但是,不建议使用 Executors 去创建线程池,而是通过 ThreadPoolExecutor 的方式,明确给出线程池的参数去创建,规避资源耗尽的风险。
如果使用 Executors 去创建线程池:
最佳的实践是通过 ThreadPoolExecutor 手动地去创建线程池,选取合适的队列存储任务,并指定线程池线程大小。通过线程池实现类 ThreadPoolExecutor 可构造出线程池的,构造函数有下面几个重要的参数:
参数 1:corePoolSize
线程池核心线程数。
参数 2:workQueue
阻塞队列,用于保存执行任务的线程,有 4 种阻塞队列可选:
参数 3:maximunPoolSize
线程池最大线程数。如果阻塞队列满了(有界的阻塞队列),来了一个新的任务,若线程池当前线程数小于最大线程数,则创建新的线程执行任务,否则交给饱和策略处理。如果是无界队列就不存在这种情况,任务都在无界队列里存储着。
参数 4:RejectedExecutionHandler
拒绝策略,当队列满了,而且线程达到了最大线程数后,对新任务采取的处理策略。
有 4 种策略可选:
最后,还可以自定义处理策略。
参数 5:ThreadFactory
创建线程的工厂。
参数 6:keeyAliveTime
线程没有任务执行时最多保持多久时间终止。当线程池中的线程数大于 corePoolSize 时,线程池中所有线程中的某一个线程的空闲时间若达到 keepAliveTime,则会终止,直到线程池中的线程数不超过 corePoolSize。但如果调用了 allowCoreThread TimeOut(boolean value) 方法,线程池中的线程数就算不超过 corePoolSize,keepAlive Time 参数也会起作用,直到线程池中的线程数量变为 0。
参数 7:TimeUnit
配合第 6 个参数使用,表示存活时间的时间单位最佳的实践是通过 ThreadPoolExecutor 手动地去创建线程池,选取合适的队列存储任务,并指定线程池线程大小。
运行结果:
线程池创建线程时,会将线程封装成工作线程 Worker,Worker 在执行完任务后,还会不断的去获取队列里的任务来执行。Worker 的加锁解锁机制是继承 AQS 实现的。
我们来看下 Worker 线程的运行过程:
总结来说,如果当前运行的线程数小于 corePoolSize 线程数,则获取全局锁,然后创建新的线程来执行任务如果运行的线程数大于等于 corePoolSize 线程数,则将任务加入阻塞队列 BlockingQueue 如果阻塞队列已满,无法将任务加入 BlockingQueue,则获取全局所,再创建新的线程来执行任务
如果新创建线程后使得线程数超过了 maximumPoolSize 线程数,则调用 Rejected ExecutionHandler.rejectedExecution() 方法根据对应的拒绝策略处理任务。
CPU 密集型任务,线程执行任务占用 CPU 时间会比较长,应该配置相对少的线程数,避免过度争抢资源,可配置 N 个 CPU+1 个线程的线程池;但 IO 密集型任务则由于需要等待 IO 操作,线程经常处于等待状态,应该配置相对多的线程如 2*N 个 CPU 个线程,A 线程阻塞后,B 线程能马上执行,线程多竞争激烈,能饱和的执行任务。线程提交 SQL 后等待数据库返回结果时间较长的情况,CPU 空闲会较多,线程数应设置大些,让更多线程争取 CPU 的调度。
并发编程之线程
目录
第十五章、并发编程之线程
1.什么是线程
纠正概念:进程其实不是个执行单位,进程是一个资源单位,每个进程内自带一个线程,线程才是cpu上的执行单位
抽象理解:
进程是指在系统中正在运行的一个应用程序;线程是系统分配处理器时间资源的基本单元,或者说进程之内独立执行的一个单元。对于操作系统而言,其调度单元是线程。
线程:cpu最小的执行单位
进程:资源集合/资源单位.
线程运行 = 运行代码
进程运行 = 各种资源 + 线程
图片理解:
例子理解:
在传统操作系统中,每个进程有一个地址空间,而且默认就有一个控制线程
在工厂中, 每个车间都有房子,而且每个车间默认就有一条流水线.
2. 进程和线程的区别
线程:单个线程的内存空间数据共享(进程内的数据)
进程:物理内存空间隔离(多个进程内存空间彼此隔离)
进程是告诉操作系统开辟内存空间
线程是告诉操作系统执行一条任务代码(线程的创建速度是进程的100倍)
3. 开启线程的两种方式
函数开启
from threading import Thread
import time
def task(name):
print('%s is runing '%name)
time.sleep(2)
print('%s is done'%name)
t=Thread(target=task,args=('子线程',))
t.start()
类开启
class Task(Thread):
def run(self):
print('%s is runing ' % self.name)
time.sleep(2)
print('%s is done' % self.name)
t = Task()t.start()print('zhu')
4.子线程与子进程创建速度
from threading import Thread
from multiprocessing import Process
import time
def task(name):
print(f'name is running')
time.sleep(2)
print(f'name is end')
if __name__ == '__main__':
t = Thread(target=task,args=('子线程',))
p = Process(target=task,args=('子进程',))
# t.start()
p.start()
print('主')
------------------------------------------------
############开启子线程的打印效果:################
子线程 is running
主
子线程 is end
##########开启子进程打印效果:##################
主
子进程 is running
子进程 is end
总结:线程比进程创建速度快
5.子线程共享数据的证明
from threading import Thread
import time,os
x = 100
def task():
global x
x = 50
print(os.getpid()) # 4652
if __name__ == '__main__':
t = Thread(target=task)
t.start()
time.sleep(2)
print(x) # 50
print(os.getpid()) # 4652
------------------------------------------
4652
50
4652
进程开启子进程是开辟新的内存空间,而线程开启子线程是共用一个内存空间
即:进程开启子进程的pid号不一样,
? 线程开启子线程的pid号一样
6.线程的join方法
单个子线程
子线程 start
主线程
子线程 endfrom threading import Thread
import time
def task():
print('子线程 start')
time.sleep(2)
print('子线程 end')
def task2():
print('子线程 start')
time.sleep(5)
print('子线程 end')
t = Thread(target=task)
t.start()
t2.start()
t.join() # 等待子线程运行结束
print('主线程')
-------------------------------
子线程 start
子线程 end
主线程
----------------------------------
#给t.join()加注释的结果如下
子线程 start
主线程
子线程 end
说明:主线程将会等待子线程的sleep和这样的一段时间,子线程的start()在join之前,说明该子线程必须运行结束,才运行到print(‘主线程‘)
,主线程才执行完毕,如果给t.join()加注释,则说明主线程执行完毕了后,主线程直接结束。
多个子线程
from threading import Thread
import time
def task(name,n):
print(f'name start')
time.sleep(n)
print(f'name end')
t1 = Thread(target=task,args=('线程1',1))
t2 = Thread(target=task,args=('线程2',2))
t3 = Thread(target=task,args=('线程3',3))
start = time.time()
t1.start()
t2.start()
t3.start()
t1.join() # 111s
t2.join() #
t3.join()
end = time.time()
------------------------------------------
线程1 start
线程2 start
线程3 start
线程1 end
线程2 end
线程3 end
3.0022878646850586
#主线程开始->线程1开始->线程1结束->线程2开始->线程2结束->线程3开始->线程3结束->主线程结束
#因为1线程、2线程、3线程进入了同一个方法,本应该"同时"start()运行,但是现在是线程1 在start后使用join,那么线程2会老老实实的等线程1先跑完
说明:实现了多线程的并发执行
思考
? 思考一下 在单核的情况下 多个线程是如何利用cpu的?
? 答:单核CPU上运行的多线程程序, 同一时间只能一个线程在跑, 系统帮你切换线程而已, 系统给每个线程分配时间片来执行, 每个时间片大概10ms左右, 看起来像是同时跑, 但实际上是每个线程跑一点点就换到其它线程继续跑效率不会有提高的 切换线程反倒会增加开销
7.了解进程的join
from multiprocessing import Process
from threading import Thread
import time
def task():
print('进程 开启')
time.sleep(10)
print('进程 结束')
def task2():
print('子线程 开启')
time.sleep(2)
print('子线程 结束')
if __name__ == '__main__':
p = Process(target=task)
t = Thread(target=task2)
t.start() # 开线程
p.start() # 开进程
print('子进程join开始')
p.join() # 主进程的主线程等待子进程运行结束
print('主')
8. 线程的其他相关用法
# print(t1.is_alive()) # True
# print(t1.getName()) # Thread-1
# print(t2.getName()) # Thread-2
# t1.setName('班长')
# print(t1.getName())
# print(currentThread().name)
# print(enumerate()) # [<_MainThread(MainThread, started 1856)>, <Thread(Thread-1, started 6948)>, <Thread(Thread-2, started 3128)>]
# print(activeCount()) # 3
# print(len(enumerate())) # 3
以上是关于并发编程解惑之线程的主要内容,如果未能解决你的问题,请参考以下文章