支持向量机优缺点?

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了支持向量机优缺点?相关的知识,希望对你有一定的参考价值。

参考技术A (1)非线性映射是SVM方法的理论基础,SVM利用内积核函数代替向高维空间的非线性映射;

(2)对特征空间划分的最优超平面是SVM的目标,最大化分类边际的思想是SVM方法的核心;

(3)支持向量是SVM的训练结果,在SVM分类决策中起决定作用的是支持向量;

(4)SVM 是一种有坚实理论基础的新颖的小样本学习方法。

神经网络和支持向量机的优缺点!

1、神经网络优缺点


优点:
有很强的非线性拟合能力,可映射任意复杂的非线性关系,而且学习规则简单,便于计算机实现。具有很强的鲁棒性、记忆能力、非线性映射能力以及强大的自学习能力,因此有很大的应用市场。
缺点:
(1)最严重的问题是没能力来解释自己的推理过程和推理依据。
(2)不能向用户提出必要的询问,而且当数据不充分的时候,
就无法进行工作。
(3)把一切问题的特征都变为数字,把一切推理都变为
,其结果势必是丢失信息。
(4)理论和学习算法还有待于进一步完善和提高。


2、SVM的优缺点


优点:

(1)非线性映射是SVM方法的理论基础,SVM利用内积核函数代替向高维空间的非线性映射;
(2)对特征空间划分的最优超平面是SVM的目标,最大化分类边际的思想是SVM方法的核心;
(3)支持向量是SVM的训练结果,在SVM分类决策中起决定作用的是支持向量.
(4)SVM 是一种有坚实理论基础的新颖的小样本学习方法.它基本上不涉及概率测度及大数定律等,因此不同于现有的统计方法.从本质上看,它避开了从归纳到演绎的传统过程,实现了高效的从训练样本到预报样本的“转导推理”,大大简化了通常的分类和回归等问题.
(5)SVM 的最终决策函数只由少数的支持向量所确定,计算的复杂性取决于支持向量的数目,而不是样本空间的维数,这在某种意义上避免了“维数灾难”.
(6)少数支持向量决定了最终结果,这不但可以帮助我们抓住关键样本、“剔除”大量冗余样本,而且注定了该方法不但算法简单,而且具有较好的“鲁棒”性.这种“鲁棒”性主要体现在:
①增、删非支持向量样本对模型没有影响;
②支持向量样本集具有一定的鲁棒性;
③有些成功的应用中,SVM 方法对核的选取不敏感
缺点:

(1) SVM算法对大规模训练样本难以实施
由于SVM是借助二次规划来求解支持向量,而求解二次规划将涉及m阶矩阵的计算(m为样本的个数),当m数目很大时该矩阵的存储和计算将耗费大量的机器内存和运算时间.针对以上问题的主要改进有有J.Platt的SMO算法、T.Joachims的SVM、C.J.C.Burges等的PCGC、张学工的CSVM以及O.L.Mangasarian等的SOR算法
(2) 用SVM解决多分类问题存在困难
经典的支持向量机算法只给出了二类分类的算法,而在数据挖掘的实际应用中,一般要解决多类的分类问题.可以通过多个二类支持向量机的组合来解决.主要有一对多组合模式、一对一组合模式和SVM决策树;再就是通过构造多个分类器的组合来解决.主要原理是克服SVM固有的缺点,结合其他算法的优势,解决多类问题的分类精度.如:与粗集理论结合,形成一种优势互补的多类问题的组合分类器。


数学是有约束、有边界、有条件的,试图仅仅用数学描绘宇宙的想法与诗人无异!

以上是关于支持向量机优缺点?的主要内容,如果未能解决你的问题,请参考以下文章

支持向量机分类方法的优缺点

机器学习——支持向量机

02-33 非线性支持向量机

机器学习--支持向量机 (SVM)算法的原理及优缺点

支持向量机(SVM)复习总结

神经网络和支持向量机的优缺点!