赛道 | ICPR2020大规模商品图像识别挑战赛冠军方案分享
Posted DeepBlue深兰科技
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了赛道 | ICPR2020大规模商品图像识别挑战赛冠军方案分享相关的知识,希望对你有一定的参考价值。
大规模商品图像识别挑战赛
冠军方案
赛题介绍
随着互联网技术和电子商务的迅猛发展,人们的购物方式逐步由传统实体店购物变为网络购物。为了充分满足客户海量、多样化的网上购物需求,人工智能零售系统需要快速地从图像和视频中自动识别出产品的存货单元(Stock Keeping Unit,SKU)级别的类别,然而,许多SKU级别的产品都是细粒度的,可以看出它们在视觉上是相似的。
JDAI构建了一个名为Products-10K[1]的产品识别数据集,这是迄今为止最大的一个产品识别数据集,其中包含了约10000种经常被中国消费者购买的产品,涵盖了时尚、3C、食品、保健、家居用品等全品类。
该赛题由JDAI和ICPR 2020、Kaggle等联合举办,要求参数者开发算法基于提供的产品图片进行细粒度分类。
评测指标
团队成绩
赛题分析
该赛题提供了约150000张图片,10000个细粒度的SKU级别的标签,以及360个组别标签,经过数据分析可以总结该数据集有以下特点:
竞赛方案
CosFace训练测试过程
CircleSoftmax训练测试过程
Loss设计
参考文献:
1. Bai Y, Chen Y, Yu W, et al. Products-10K: A Large-scale Product Recognition Dataset[J]. arXiv preprint arXiv:2008.10545, 2020.
2. Zhang H, Wu C, Zhang Z, et al. Resnest: Split-attention networks[J]. arXiv preprint arXiv:2004.08955, 2020.
3. Radenović F, Tolias G, Chum O. Fine-tuning CNN image retrieval with no human annotation[J]. IEEE transactions on pattern analysis and machine intelligence, 2018, 41(7): 1655-1668.
4. Sun Y, Cheng C, Zhang Y, et al. Circle loss: A unified perspective of pair similarity optimization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 6398-6407.
5. Luo, H., Gu, Y., Liao, X., Lai, S., Jiang, W.: Bag of tricks and a strong baseline for deep person re-identification (2019).
6. Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE international conference on computer vision. 2017: 2980-2988.
7. Hendrycks D, Mu N, Cubuk E D, et al. Augmix: A simple data processing method to improve robustness and uncertainty[J]. arXiv preprint arXiv:1912.02781, 2019.
8. Wang H, Wang Y, Zhou Z, et al. Cosface: Large margin cosine loss for deep face recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 5265-5274.
以上是关于赛道 | ICPR2020大规模商品图像识别挑战赛冠军方案分享的主要内容,如果未能解决你的问题,请参考以下文章
ICPR 图像识别与检测挑战赛冠军方案出炉,基于偏旁部首来识别 Duang 字
实现设备上的节能图像识别 — Qualcomm Technologies 的方法