神经网络视频/图像渲染相关经典论文项目数据集等资源整理分享

Posted 深度学习与NLP

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了神经网络视频/图像渲染相关经典论文项目数据集等资源整理分享相关的知识,希望对你有一定的参考价值。




    本资源首先对深度神经网络视频/图像渲染(Neural Rendering)相关技术进行介绍,然后整理了神经网络渲染相关的经典论文、项目、数据集等资源,分享给大家。


神经网络渲染简介

    神经网络渲染是一个新兴的快速发展的领域,它将生成机器学习技术与计算机图形学中的物理知识相结合,例如通过将可微分渲染技术集成到网络训练中。

     

    Ayush Tewari 等人将神经网络渲染定义为

    深层图像或视频生成方法,能够显式或隐式控制场景属性,如照明、相机参数、姿态、几何形状、外观和语义结构。

    典型的神经网络渲染方法将对应于特定场景条件(例如,视点、照明、布局等)的图像作为输入),从它们构建“神经”场景表示,并在新颖的场景属性下“渲染”该表示以合成新颖的图像。

    给定高质量的场景,经典渲染方法可以为各种复杂的真实世界现象渲染出高质量的图像。此外,渲染让我们可以对场景的所有元素进行明确的编辑控制——相机视点、照明、几何图形和材质。然而,构建高质量的场景模型,尤其是直接从图像中构建,需要大量的人工工作,并且从图像中自动进行场景建模是一个开放的研究问题。另一方面,深度生成网络现在开始从随机噪声中产生视觉上引人注目的图像和视频,或者以场景分割和布局等特定用户规范为条件。然而,它们还不允许对场景外观进行细粒度的控制,并且不能总是处理场景属性之间复杂的、非局部的3D交互。相比之下,神经网络渲染方法有望将这些方法结合起来,实现从输入图像/视频中可控、高质量地合成新图像。

     

    链接: https://pan.baidu.com/s/1XujXmsBz2VNljk8fX1gMEQ 

    提取码: nsef


目录

    相关研究和课程

    反向渲染

    流体和烟雾模拟

    基于可微物理的模拟

    神经毛发渲染

    个体对象操作

    语义照片合成与处理

    纹理和表面贴图

    神经场景表示和渲染

    对象和场景的新颖视图合成

    光、反射、光照和阴影

    动作转移、重定目标、重新制作、配音和动画


    相关研究和课程

    State of the Art on Neural Rendering.
Ayush Tewari, Ohad Fried, Justus Thies, Vincent Sitzmann, Stephen Lombardi, Kalyan Sunkavalli, Ricardo Martin-Brualla, Tomas Simon, Jason Saragih, Matthias Nießner, Rohit Pandey, Sean Fanello, Gordon Wetzstein, Jun-Yan Zhu, Christian Theobalt, Maneesh Agrawala, Eli Shechtman, Dan B Goldman, Michael Zollhöfer.
Eurographics 2020.

    3D Scene Generation.
Angel X. Chang, Daniel Ritchie, Qixing Huang, Manolis Savva.
CVPR 2019 Workshop.

     

    反向渲染

    NiLBS: Neural Inverse Linear Blend Skinning.
Timothy Jeruzalski, David I.W. Levin, Alec Jacobson, Paul Lalonde, Mohammad Norouzi, Andrea Tagliasacchi.
arxiv 2020. [PDF]

    Learning to Predict 3D Objects with an Interpolation-based Differentiable Renderer.
Wenzheng Chen, Jun Gao, Huan Ling, Edward J. Smith, Jaakko Lehtinen, Alec Jacobson, Sanja Fidler.
NeurIPS 2019. [PDF]

    InverseRenderNet: Learning Single Image Inverse Rendering.
Ye Yu, William A. P. Smith.
CVPR 2019. [PDF] [Github] [IIW Dataset]

    Learning Inverse Rendering of Faces from Real-world Videos.
Yuda Qiu, Zhangyang Xiong, Kai Han, Zhongyuan Wang, Zixiang Xiong, Xiaoguang Han.
arxiv, 2020. [PDF] [Github]

     

    流体和烟雾模拟

    Lagrangian Neural Style Transfer for Fluids.
Byungsoo Kim, Vinicius C. Azevedo, Markus Gross, Barbara Solenthaler.
SIGGRAPH 2020. [PDF]

    Transport-Based Neural Style Transfer for Smoke Simulations.
Byungsoo Kim, Vinicius C. Azevedo, Markus Gross, Barbara Solenthaler.
SIGGRAPH ASIA 2019. [PDF]


    基于可微物理的模拟

    DiffTaichi: Differentiable Programming for Physical Simulation.
Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-Kelley, Fredo Durand.
ICLR 2020. [PDF] [Github]

    A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising.
Kaixuan Wei, Ying Fu, Jiaolong Yang, Hua Huang.
CVPR 2020. [PDF] [Github]

    Use the Force, Luke! Learning to Predict Physical Forces by Simulating Effects.
Kiana Ehsani, Shubham Tulsiani, Saurabh Gupta, Ali Farhadi, Abhinav Gupta.
CVPR 2020. [PDF]

    SAPIEN: A SimulAted Part-based Interactive ENvironment.
Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu, Hanxiao Jiang, Yifu Yuan, He Wang, Li Yi, Angel X. Chang, Leonidas J. Guibas, Hao Su.
CVPR 2020. [PDF] [Project] [Documentation] [Github]

    Differentiable Programming for Physical Simulation.
Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-Kelley, and Frédo Durand.
ICLR 2020. [PDF] [Github]

    GarNet: A Two-Stream Network for Fast and Accurate 3D Cloth Draping.
Erhan Gundogdu, Victor Constantin, Amrollah Seifoddini, Minh Dang, Mathieu Salzmann, Pascal Fua.
ICCV 2019. [PDF] [Supplementary Material] [Project] [Dataset]

     

    神经毛发渲染

    Neural Hair Rendering.
Menglei Chai, Jian Ren, Sergey Tulyakov.
arxiv 2020. [PDF]

    MichiGAN: Multi-Input-Conditioned Hair Image Generation for Portrait Editing.
Zhentao Tan, Menglei Chai, Dongdong Chen, Jing Liao, Qi Chu, Lu Yuan, Sergey Tulyakov, Nenghai Yu.
SIGGRAPH 2020. [PDF]

     

    个体对象操作

    Self-Supervised Scene De-occlusion.
Xiaohang Zhan, Xingang Pan, Bo Dai, Ziwei Liu, Dahua Lin, and Chen Change Loy.
CVPR 2020. [PDF] [Github] [Project] [Demo]

    3DLSN: End-to-End Optimization of Scene Layout.
Andrew Luo, Zhoutong Zhang, Jiajun Wu, Joshua B. Tenenbaum.
CVPR 2020. [PDF] [Project]

    DJRN: Detailed 2D-3D Joint Representation for Human-Object Interaction.
Yong-Lu Li, Xinpeng Liu, Han Lu, Shiyi Wang, Junqi Liu, Jiefeng Li, Cewu Lu.
CVPR 2020. [PDF] [Github]

    Learning to Manipulate Individual Objects in an Image.
Yanchao Yang, Yutong Chen, Stefano Soatto.
arxiv 2020. [PDF]

     

    语义照片合成与处理

    pix2pixHD: High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs.
Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, Bryan Catanzaro.
CVPR 2018. [PDF] [Github]

    SPADE: Semantic Image Synthesis with Spatially-Adaptive Normalization.
Taesung Park, Ming-Yu Liu, Ting-Chun Wang, Jun-Yan Zhu.
CVPR 2019. [PDF] [Github]

    Semantic Bottleneck Scene Generation.
Samaneh Azadi, Michael Tschannen, Eric Tzeng, Sylvain Gelly, Trevor Darrell, Mario Lucic.
arxiv, 2019. [PDF]

    Local Class-Specific and Global Image-Level Generative Adversarial Networks for Semantic-Guided Scene Generation.
Hao Tang, Dan Xu, Yan Yan, Philip H. S. Torr, Nicu Sebe.
CVPR 2020. [PDF] [Github]

    SelectionGAN: Multi-Channel Attention Selection GAN with Cascaded Semantic Guidance for Cross-View Image Translation.
Hao Tang, Dan Xu, Nicu Sebe, Yanzhi Wang, Jason J. Corso, Yan Yan.
VPR 2019. [PDF] [Github]

     

    纹理和表面贴图

    GPU-Accelerated Mobile Multi-view Style Transfer.
Puneet Kohli, Saravana Gunaseelan, Jason Orozco, Yiwen Hua, Edward Li, Nicolas Dahlquist.
arxiv 2020. [PDF]

    Leveraging 2D Data to Learn Textured 3D Mesh Generation.
Paul Henderson, Vagia Tsiminaki, Christoph H. Lampert.
CVPR 2020. [PDF]

    Articulation-aware Canonical Surface Mapping.
Nilesh Kulkarni, Abhinav Gupta, David F. Fouhey, Shubham Tulsiani.
CVPR 2020. [PDF] [Github] [Project]

    UnrealText: Synthesizing Realistic Scene Text Images from the Unreal World.
Shangbang Long, Cong Yao.
CVPR 2020. [PDF] [Github]

    Adversarial Texture Optimization from RGB-D Scans.
Jingwei Huang, Justus Thies, Angela Dai, Abhijit Kundu, Chiyu Jiang, Leonidas Guibas, Matthias Nießner, Thomas Funkhouser.
CVPR 2020. [PDF] [Project] [Github] [pyRender]

    CSM: Canonical Surface Mapping via Geometric Cycle Consistency.
Nilesh Kulkarni, Abhinav Gupta, Shubham Tulsiani.
ICCV 2019. [PDF] [Github] [Project]

    Texture Mapping for 3D Reconstruction with RGB-D Sensor.
Yanping Fu, Qingan Yan, Long Yang, Jie Liao, Chunxia Xiao.
CVPR 2018. [PDF] [thecvf] [Code on Github]

    Let There Be Color! - Large-Scale Texturing of 3D Reconstructions.
Waechter, Michael and Moehrle, Nils and Goesele, Michael.
ECCV 2018. [PDF] [Project] [Github] [rayint] [Eigen] [Multi-View Environment] [mapMAP]

    Learning Category-Specific Mesh Reconstruction from Image Collections.
Angjoo Kanazawa, Shubham Tulsiani Alexei A. Efros, Jitendra Malik.
ECCV 2018. [Github] [Project]

    Texture Fields: Learning Texture Representations in Function Space.
Michael Oechsle, Lars Mescheder, Michael Niemeyer, Thilo Strauss, Andreas Geiger.
ICCV 2019. [PDF]

    AtlasNet: A Papier-Mache Approach to Learning 3D Surface Generation.
Thibault Groueix, Matthew Fisher, Vladimir Kim, Bryan Russell, Mathieu Aubry.
CVPR 2018. [PDF] [Project] [Github]

    Learning Elementary Structures For 3D Shape Generation And Matching.
Theo Deprelle, Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan C. Russell, Mathieu Aubry.
arxiv, 2019. [PDF] [Project] [Github]

    Learning to Generate Textures on Meshes.
Amit Raj, Cusuh Ham, Connelly Barnes, Vladimir Kim, Jingwan Lu, James Hays.
CVPR Deep Generative Models for 3D Understanding 2019 (Best Paper). [PDF]

    Unsupervised Texture Transfer from Images to Model Collections.
Tuanfeng Yand Wang, Hao Su, Qixing Huang, Jingwei Huang, Leonidas J. Guibas, Niloy J. Mitra.
SIGGRAPH Asia 2016. [PDF] [Project] [Data]

     

    神经场景表示和渲染

    CoReNet: Coherent 3D Scene Reconstruction From a Single RGB Image.
Stefan Popov, Pablo Bauszat, Vittorio Ferrari.
arxiv 2020. [PDF]

    Single-View View Synthesis with Multiplane Images.
Richard Tucker and Noah Snavely.
CVPR 2020. [PDF] [Project]

    LIMP: Learning Latent Shape Representations with Metric Preservation Priors.
Luca Cosmo, Antonio Norelli, Oshri Halimi, Ron Kimmel, Emanuele Rodolà.
arxiv 2020. [PDF]

    Learning 3D Part Assembly from a Single Image.
Yichen Li, Kaichun Mo, Lin Shao, Minhyuk Sung, Leonidas Guibas.
arxiv 2020. [PDF]

    Curriculum DeepSDF.
Yueqi Duan, Haidong Zhu, He Wang, Li Yi, Ram Nevatia, Leonidas J. Guibas.
arxiv, 19 Mar 2020. [PDF] [Github]

    PolyGen: An Autoregressive Generative Model of 3D Meshes.
Charlie Nash, Yaroslav Ganin, S. M. Ali Eslami, Peter W. Battaglia.
arxiv, 23 Feb 2020. [PDF]

    Self-supervised Learning of 3D Objects from Natural Images.
Hiroharu Kato, Tatsuya Harada.
arxiv, 20 Nov. 2019. [PDF] [Project]

    BlockGAN: Learning 3D Object-Aware Scene Representations from Unlabelled Images.
Thu Nguyen-Phuoc, Christian Richardt, Long Mai, Yong-Liang Yang, Niloy Mitra.
arxiv, 20 Feb 2020. [PDF] [Project]

    DualSDF: Semantic Shape Manipulation using a Two-Level Representation.
Zekun Hao, Hadar Averbuch-Elor, Noah Snavely, Serge Belongie.
CVPR 2020. [PDF]

    Learning a Neural 3D Texture Space from 2D Exemplars.
Philipp Henzler, Niloy J. Mitra, Tobias Ritschel.
CVPR 2020. [PDF] [Project]

    Neural Contours: Learning to Draw Lines from 3D Shapes.
Difan Liu, Mohamed Nabail, Aaron Hertzmann, Evangelos Kalogerakis.
CVPR 2020. [PDF] [Github]

    Pix2Shape: Towards Unsupervised Learning of 3D Scenes from Images using a View-based Representation.
Sai Rajeswar, Fahim Mannan, Florian Golemo, Jérôme Parent-Lévesque, David Vazquez, Derek Nowrouzezahrai, Aaron Courville.
IJCV 2020. [PDF]

    VCN: Volumetric Correspondence Networks for Optical Flow.
Gengshan Yang, Deva Ramanan.
NeurIPS 2019. [PDF] [GitHub] [Project]

    Transformable Bottleneck Networks.
Kyle Olszewski, Sergey Tulyakov, Oliver Woodford, Hao Li, Linjie Luo.
ICCV 2019. [PDF]

    Equivariant Multi-View Networks.
Carlos Esteves, Yinshuang Xu, Christine Allen-Blanchette, Kostas Daniilidis.
ICCV 2019. [PDF]

    DeepVoxels: Learning Persistent 3D Feature Embeddings.
Vincent Sitzmann, Justus Thies, Felix Heide, Matthias Nießner, Gordon Wetzstein, Michael Zollhöfer.
CVPR 2019 (Oral). [Project] [PDF] [Code]

    DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation.
eong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, Steven Lovegrove.
CVPR 2019. [PDF] [Github]

    DeepSDF x Sim(3): Extending DeepSDF for automatic 3D shape retrieval and similarity transform estimation.
Oladapo Afolabi, Allen Yang, Shankar S. Sastry.
arxiv 2020. [PDF]

    Learning View Priors for Single-view 3D Reconstruction.
Hiroharu Kato, Tatsuya Harada.
CVPR 2019. [PDF] [Project] [Github]

    HoloGAN: Unsupervised Learning of 3D Representations from Natural Images.
Nguyen-Phuoc, Chuan Li, Lucas Theis, Christian Richardt Yong-liang Yang.
ICCV 2019. [PDF] [GitHub]

    C3DPO: Canonical 3D Pose Networks for Non-Rigid Structure From Motion.
David Novotny, Nikhila Ravi, Benjamin Graham, Natalia Neverova, Andrea Vedaldi.
ICCV 2019. [PDF] [Github] [Project]

    CSM: Canonical Surface Mapping via Geometric Cycle Consistency.
Nilesh Kulkarni, Abhinav Gupta, Shubham Tulsiani.
ICCV 2019. [PDF] [Github] [Project]

     

    对象和场景的新颖视图合成

    Novel-View Synthesis

    NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis.
Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, Ren Ng.
arxiv, 19 Mar 2020. [PDF] [Project] [Gtihub-Tensorflow] [krrish94-PyTorch] [yenchenlin-PyTorch]

    Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations.
Vincent Sitzmann, Michael Zollhöfer, Gordon Wetzstein.
NeurIPS 2019 (Oral, Honorable Mention "Outstanding New Directions"). [PDF] [Project] [Github] [Dataset]

    LLFF: Local Light Field Fusion: Practical View Synthesis with Prescriptive Sampling Guidelines.
Ben Mildenhall, Pratul Srinivasan, Rodrigo Ortiz-Cayon, Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, Abhishek Kar.
SIGGRAPH 2019. [PDF] [Project] [Github]

    Neural Volumes: Learning Dynamic Renderable Volumes from Images.
Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel Schwartz, Andreas Lehrmann, Yaser Sheikh.
SIGGRAPH 2019. [PDF] [Github]

    Self-Supervised 3D Human Pose Estimation via Part Guided Novel Image Synthesis.
Jogendra Nath Kundu, Siddharth Seth, Varun Jampani, Mugalodi Rakesh, R. Venkatesh Babu, Anirban Chakraborty.
CVPR 2020. [PDF]

    IGNOR: Image-guided Neural Object Rendering.
Justus Thies, Michael Zollhöfer, Christian Theobalt, Marc Stamminger, Matthias Nießner.
ICLR 2020. arxiv, 26 Nov 2018 (15 Jan 2020). [PDF] [Project]

    Monocular Neural Image Based Rendering with Continuous View Control.
Xu Chen, Jie Song, Otmar Hilliges.
ICCV 2019. [PDF]

    Extreme View Synthesis.
Inchang Choi, Orazio Gallo, Alejandro Troccoli, Min H. Kim, Jan Kautz.
ICCV 2019. [PDF]

    Transformable Bottleneck Networks.
Kyle Olszewski, Sergey Tulyakov, Oliver Woodford, Hao Li, Linjie Luo.
ICCV 2019. [PDF]

    View Independent Generative Adversarial Network for Novel View Synthesis.
Xiaogang Xu, Ying-Cong Chen, Jiaya Jia.
ICCV 2019. [PDF]

     

    光、反射、光照和阴影

    Portrait Shadow Manipulation.
Xuaner Cecilia Zhang, J onathan T. Barron, Yun-Ta Tsai, Rohit Pandey, Xiuming Zhang, Ren Ng, David E. Jacobs.
SIGGRAPH 2020. [PDF] [Project]

    Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination.
Pratul P. Srinivasan, Ben Mildenhall, Matthew Tancik, Jonathan T. Barron, Richard Tucker, Noah Snavely.
CVPR 2020. [PDF] GitHub] [Project]

    Deep 3D Capture: Geometry and Reflectance from Sparse Multi-View Images.
Sai Bi, Zexiang Xu, Kalyan Sunkavalli, David Kriegman, Ravi Ramamoorthi.
CVPR 2020. [PDF]

    Neural Illumination: Lighting Prediction for Indoor Environments.
Shuran Song and Thomas Funkhouser.
CVPR 2019. [PDF] [Project]

    Learning to Shade Hand-drawn Sketches.
Qingyuan Zheng, Zhuoru Li, Adam Bargteil.
CVPR 2020. [PDF]

    Generating Digital Painting Lighting Effects via RGB-space Geometry.
Lvmin Zhang, Edgar Simo-Serra, Yi Ji, and Chunping Liu.
SIGGRAPH 2020 (TOG 2020). [Priject] [Github]

    Deep Single-Image Portrait Relighting.
Hao Zhou, Sunil Hadap, Kalyan Sunkavalli, David W. Jacobs.
ICCV 2019. [PDF] [Github] [Project] [DPR Dataset]

    Single Image Portrait Relighting.
Tiancheng Sun, Jonathan T. Barron, Yun-Ta Tsai, Zexiang Xu, Xueming Yu, Graham Fyffe, Christoph Rhemann, Jay Busch, Paul Debevec, Ravi Ramamoorthi.
SIGGRAPH 2019. [PDF]

    Multi-view Relighting using a Geometry-Aware Network.
Julien Philip, Michael Gharbi, Tinghui Zhou, Alexei (Alyosha) Efros, George Drettakis.
SIGGRAPH 2019. [PDF]

    Illumination Decomposition for Photograph with Multiple Light Sources.
Ling Zhang, Qingan Yan, Zheng Liu, Hua Zou, Chunxia Xiao.
TIP 2017. [PDF] [Github]

    Learning to Predict Indoor Illumination from a Single Image.
Marc-André Gardner, Kalyan Sunkavalli, Ersin Yumer, Xiaohui Shen, Emiliano Gambaretto, Christian Gagné, and Jean-François Lalonde.
ACM Transactions on Graphics (SIGGRAPH Asia), 2017. [PDF] [Dataset] [Homepage]

    Deep Parametric Indoor Lighting Estimation.
Marc-André Gardner, Yannick Hold-Geoffroy, Kalyan Sunkavalli, Christian Gagné, and Jean-François Lalonde.
ICCV 2019. [PDF] [Supplementary material] [Laval Indoor HDR Database and Depth] [Project]

    Fast Spatially-Varying Indoor Lighting Estimation.
Mathieu Garon, Kalyan Sunkavalli, Sunil Hadap, Nathan Carr, Jean-François Lalonde.
CVPR 2019. [PDF] [Supplementary material] [Project] [Lavel Indoor Spatially Varying HDR Dataset / 79 HDR Light Probes]

    GLoSH: Global-Local Spherical Harmonics for Intrinsic Image Decomposition.
Hao Zhou, Xiang Yu, David W Jacobs.
ICCV 2019. [PDF] [Supplement] [Poster] [Spherical Harmonic Tools]

    SfSNet: Learning Shape, Reflectance and llluminance of Faces in the Wild.
Soumyadip Sengupta, Angjoo Kanazawa, Carlos D. Castillo, David W. Jacobs.
CVPR 2018. [Project] [PDF] [Github]

    Occlusion-aware 3D Morphable Models and an Illumination Prior for Face Image Analysis.
Bernhard Egger, Sandro Schoenborn, Andreas Schneider, Adam Kortylewski, Andreas Morel-Forster, Clemens Blumer and Thomas Vetter.
IJCV 2018. [BIP Dataset] [PDF]

    DNR: A Neural Rendering Framework for Free-Viewpoint Relighting.
Zhang Chen, Anpei Chen, Guli Zhang, Chengyuan Wang, Yu Ji, Kiriakos N. Kutulakos, Jingyi Yu.
arxiv, 26 Nov 2019. [PDF]

     

    动作转移、重定目标、重新制作、配音和动画

    [awesome-human-motion]

    FaR-GAN for One-Shot Face Reenactment.
Hanxiang Hao, Sriram Baireddy, Amy R. Reibman, Edward J. Delp.
AI for content creation workshop at CVPR 2020. [PDF]

    Skeleton-Aware Networks for Deep Motion Retargeting.
Kfir Aberman, Peizhuo Li, Dani Lischinski, Olga Sorkine-Hornung, Daniel Cohen-Or, Baoquan Chen.
SIGGRAPH 2020. [Github] [Project]

    Unpaired Motion Style Transfer from Video to Animation.
Kfir Aberman, Yijia Weng, Dani Lischinski, Daniel Cohen-Or, Baoquan Chen.
SIGGRAPH 2020. [Github] [Project]

    MakeItTalk: Speaker-Aware Talking Head Animation.
Yang Zhou, DIngzeyu Li, Xintong Han, Evangelos Kalogerakis, Eli Shechtman, Jose Echevarria.
arriv, 2020. [PDF]

    One-Shot Identity-Preserving Portrait Reenactment.
Sitao Xiang, Yuming Gu, Pengda Xiang, Mingming He, Koki Nagano, Haiwei Chen, Hao Li.
arriv, 2020. [PDF]

    Neural Head Reenactment with Latent Pose Descriptors.
Egor Burkov, Igor Pasechnik, Artur Grigorev, Victor Lempitsky.
CVPR 2020. [PDF]

    Neural Human Video Rendering by Learning Dynamic Textures and Rendering-to-Video Translation.
Lingjie Liu, Weipeng Xu, Marc Habermann, Michael Zollhoefer, Florian Bernard, Hyeongwoo Kim, Wenping Wang, Christian Theobalt.
arriv, 2020. [PDF]

    Text-based Editing of Talking-head Video.
Ohad Fried, Ayush Tewari, Michael Zollhöfer, Adam Finkelstein, Eli Shechtman, Dan B Goldman Kyle Genova, Zeyu Jin, Christian Theobalt, Maneesh Agrawala.
SIGGRAPH 2019. [PDF] [Project]

    StyleRig: Rigging StyleGAN for 3D Control over Portrait Images.
A. Tewari, M. Elgharib, G. Bharaj, F. Bernard, H-P. Seidel, P. Perez, M. Zollhöfer, C.Theobalt.
CVPR 2020. [PDF] [Project]

    TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting.
Zhuoqian Yang, Wentao Zhu, Wayne Wu, Chen Qian, Qiang Zhou, Bolei Zhou, Chen Change Loy.
CVPR 2020. [PDF] [Github] [Project]

    Human Motion Transfer from Poses in the Wild.
Jian Ren, Menglei Chai, Sergey Tulyakov, Chen Fang, Xiaohui Shen, Jianchao Yang.
arxiv 2020. [PDF]

    First Order Motion Model for Image Animation.
Aliaksandr Siarohin, Stéphane Lathuilière, Sergey Tulyakov, Elisa Ricci, Nicu Sebe.
NeurIPS 2019. [PDF] [Project] [Github]

    Neural Human Video Rendering: Joint Learning of Dynamic Textures and Rendering-to-Video Translation.
Lingjie Liu, Weipeng Xu, Marc Habermann, Michael Zollhoefer, Florian Bernard, Hyeongwoo Kim, Wenping Wang, Christian Theobalt.
arxiv, 14 Jan 2020. [PDF]

    Deferred Neural Rendering: Image Synthesis using Neural.
Justus Thies, Michael Zollhöfer, Matthias Nießner.
SIGGRAPH 2019. [PDF]

    LOGAN: Unpaired Shape Transform in Latent Overcomplete Space.
Kangxue Yin, Zhiqin Chen, Hui Huang, Daniel Cohen-Or, Hao Zhang.
SIGGRAPH Asia, 2019. [PDF]

    Neural Human Video Rendering: Joint Learning of Dynamic Textures and Rendering-to-Video Translation.
Lingjie Liu, Weipeng Xu, Marc Habermann, Michael Zollhoefer, Florian Bernard, Hyeongwoo Kim, Wenping Wang, Christian Theobalt.
arxiv, 14 Jan 2020. [PDF]

    FLNet: Landmark Driven Fetching and Learning Network for Faithful Talking Facial Animation Synthesis.
Kuangxiao Gu, Yuqian Zhou, Thomas Huang.
AAAI 2020. [PDF] [GitHub]

    Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer and Novel View Synthesis.
Wen Liu, Zhixin Piao, Jie Min, Wenhan Luo, Lin Ma, Shenghua Gao.
ICCV 2019. [PDF] [HomePage] [Github].

    Learning Character-Agnostic Motion for Motion Retargeting in 2D.
Kfir Aberman, Rundi Wu, Dani Lischinski, Baoquan Chen, Daniel Cohen-Or.
SIGGRAPH 2019. [PDF] [Github] [Project]

    Progressive Pose Attention Transfer for Person Image Generation.
Zhen Zhu, Tengteng Huang, Baoguang Shi, Miao Yu, Bofei Wang, Xiang Bai.
CVPR 2019. [Project] [PDF]

    Textured Neural Avatars.
Aliaksandra Shysheya, Egor Zakharov, Kara-Ali Aliev, Renat Bashirov, Egor Burkov, Karim Iskakov, Aleksei Ivakhnenko, Yury Malkov, Igor Pasechnik, Dmitry Ulyanov, Alexander Vakhitov, Victor Lempitsky.
CVPR 2019 (oral). [PDF] [Project]

    Appearance Composing GAN: A General Method for Appearance-Controllable Human Video Motion Transfer.
Dongxu Wei, Haibin Shen, Kejie Huang.
arxiv, 25 Nov 2019. [PDF]

    EBT: Everybody's Talkin': Let Me Talk as You Want.
Linsen Song, Wayne Wu, Chen Qian, Ran He, Chen Change Loy.
arxiv, 15 Jan 2020. [PDF] [Project]

    Photo Wake-Up: 3D Character Animation from a Single Photo.
Chung-Yi Weng, Brian Curless, Ira Kemelmacher-Shlizerman.
CVPR 2019. [PDF] [Project]



神经网络视频/图像渲染相关经典论文、项目、数据集等资源整理分享
扫描下方二维码可以订阅哦!
神经网络视频/图像渲染相关经典论文、项目、数据集等资源整理分享
神经网络视频/图像渲染相关经典论文、项目、数据集等资源整理分享

DeepLearning_NLP

神经网络视频/图像渲染相关经典论文、项目、数据集等资源整理分享

深度学习与NLP

以上是关于神经网络视频/图像渲染相关经典论文项目数据集等资源整理分享的主要内容,如果未能解决你的问题,请参考以下文章

深度学习经典神经网络 VGG 论文解读

总结 | 卷积神经网络必读的40篇经典论文,包含检测/识别/分类/分割多个领域...

经典卷积神经网络简介之【AlexNet】

中文医疗领域自然语言处理相关数据集经典论文资源蒸馏分享

经典深度神经网络架构解析 - VGG,ResNet,Inception

论文 | VGG:用于大规模图像识别的超深度卷积网络