图像分类实战——使用EfficientNetV2实现图像分类(Pytorch)
Posted AI浩
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了图像分类实战——使用EfficientNetV2实现图像分类(Pytorch)相关的知识,希望对你有一定的参考价值。
目录
摘要
这几天学习了EfficientNetV2,对论文做了翻译,并复现了论文的代码。
论文翻译:【图像分类】 EfficientNetV2:更快、更小、更强——论文翻译_AI浩-CSDN博客
代码复现:【图像分类】用通俗易懂代码的复现EfficientNetV2,入门的绝佳选择(pytorch)_AI浩-CSDN博客
对EfficientNetV2想要了解的可以查看上面的文章,这篇文章着重介绍如何使用EfficientNetV2实现图像分类。Loss函数采用CrossEntropyLoss,可以通过更改最后一层的全连接方便实现二分类和多分类。数据集采用经典的猫狗大战数据集,做二分类的实现。
数据集地址:链接:https://pan.baidu.com/s/1kqhVPOqV5vklYYIFVAzAAA
提取码:3ch6
新建项目
新建一个图像分类的项目,在项目的跟目录新建文件夹model,用于存放EfficientNetV2的模型代码,新建EfficientNetV2.py,将【图像分类】用通俗易懂代码的复现EfficientNetV2,入门的绝佳选择(pytorch)_AI浩-CSDN博客 复现的代码复制到里面,然后在model文件夹新建__init__.py空文件,model的目录结构如下:
在项目的根目录新建train.py,然后在里面写训练代码。
导入所需要的库
import torch.optim as optim
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torch.autograd import Variable
from model.EfficientNetv2 import efficientnetv2_s
设置全局参数
设置BatchSize、学习率和epochs,判断是否有cuda环境,如果没有设置为cpu。
# 设置全局参数
modellr = 1e-4
BATCH_SIZE = 64
EPOCHS = 20
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
图像预处理
在做图像与处理时,train数据集的transform和验证集的transform分开做,train的图像处理出了resize和归一化之外,还可以设置图像的增强,比如旋转、随机擦除等一系列的操作,验证集则不需要做图像增强,另外不要盲目的做增强,不合理的增强手段很可能会带来负作用,甚至出现Loss不收敛的情况。
# 数据预处理
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
transform_test = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
读取数据
使用Pytorch的默认方式读取数据。数据的目录如下图:
训练集,取了猫狗大战数据集中,猫狗图像各一万张,剩余的放到验证集中。
# 读取数据
dataset_train = datasets.ImageFolder('data/train', transform)
print(dataset_train.imgs)
# 对应文件夹的label
print(dataset_train.class_to_idx)
dataset_test = datasets.ImageFolder('data/val', transform_test)
# 对应文件夹的label
print(dataset_test.class_to_idx)
# 导入数据
train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False)
设置模型
使用CrossEntropyLoss作为loss,模型采用efficientnetv2_s,由于没有Pytorch的预训练模型,我们只能从头开始训练。更改最后一层的全连接,将类别设置为2,然后将模型放到DEVICE。优化器选用Adam。
# 实例化模型并且移动到GPU
criterion = nn.CrossEntropyLoss()
model = efficientnetv2_s()
num_ftrs = model.classifier.in_features
model.classifier = nn.Linear(num_ftrs, 2)
model.to(DEVICE)
# 选择简单暴力的Adam优化器,学习率调低
optimizer = optim.Adam(model.parameters(), lr=modellr)
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
modellrnew = modellr * (0.1 ** (epoch // 50))
print("lr:", modellrnew)
for param_group in optimizer.param_groups:
param_group['lr'] = modellrnew
设置训练和验证
# 定义训练过程
def train(model, device, train_loader, optimizer, epoch):
model.train()
sum_loss = 0
total_num = len(train_loader.dataset)
print(total_num, len(train_loader))
for batch_idx, (data, target) in enumerate(train_loader):
data, target = Variable(data).to(device), Variable(target).to(device)
output = model(data)
loss = criterion(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print_loss = loss.data.item()
sum_loss += print_loss
if (batch_idx + 1) % 50 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\\tLoss: {:.6f}'.format(
epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),
100. * (batch_idx + 1) / len(train_loader), loss.item()))
ave_loss = sum_loss / len(train_loader)
print('epoch:{},loss:{}'.format(epoch, ave_loss))
#验证过程
def val(model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
total_num = len(test_loader.dataset)
print(total_num, len(test_loader))
with torch.no_grad():
for data, target in test_loader:
data, target = Variable(data).to(device), Variable(target).to(device)
output = model(data)
loss = criterion(output, target)
_, pred = torch.max(output.data, 1)
correct += torch.sum(pred == target)
print_loss = loss.data.item()
test_loss += print_loss
correct = correct.data.item()
acc = correct / total_num
avgloss = test_loss / len(test_loader)
print('\\nVal set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\\n'.format(
avgloss, correct, len(test_loader.dataset), 100 * acc))
# 训练
for epoch in range(1, EPOCHS + 1):
adjust_learning_rate(optimizer, epoch)
train(model, DEVICE, train_loader, optimizer, epoch)
val(model, DEVICE, test_loader)
torch.save(model, 'model.pth')
完成上面的代码后就可以开始训练,点击run开始训练,如下图:
验证
测试集存放的目录如下图:
第一步 定义类别,这个类别的顺序和训练时的类别顺序对应,一定不要改变顺序!!!!我们在训练时,cat类别是0,dog类别是1,所以我定义classes为(cat,dog)。
第二步 定义transforms,transforms和验证集的transforms一样即可,别做数据增强。
第三步 加载model,并将模型放在DEVICE里,
第四步 读取图片并预测图片的类别,在这里注意,读取图片用PIL库的Image。不要用cv2,transforms不支持。
import torch.utils.data.distributed
import torchvision.transforms as transforms
from torch.autograd import Variable
import os
from PIL import Image
classes = ('cat', 'dog')
transform_test = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = torch.load("model.pth")
model.eval()
model.to(DEVICE)
path='data/test/'
testList=os.listdir(path)
for file in testList:
img=Image.open(path+file)
img=transform_test(img)
img.unsqueeze_(0)
img = Variable(img).to(DEVICE)
out=model(img)
# Predict
_, pred = torch.max(out.data, 1)
print('Image Name:{},predict:{}'.format(file,classes[pred.data.item()]))
运行结果:
其实在读取数据,也可以巧妙的用datasets.ImageFolder,下面我们就用datasets.ImageFolder实现对图片的预测。改一下test数据集的路径,在test文件夹外面再加一层文件件,取名为dataset,如下图所示:
然后修改读取图片的方式。代码如下:
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torch.autograd import Variable
classes = ('cat', 'dog')
transform_test = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = torch.load("model.pth")
model.eval()
model.to(DEVICE)
dataset_test = datasets.ImageFolder('data/datatest', transform_test)
print(len(dataset_test))
# 对应文件夹的label
for index in range(len(dataset_test)):
item = dataset_test[index]
img, label = item
img.unsqueeze_(0)
data = Variable(img).to(DEVICE)
output = model(data)
_, pred = torch.max(output.data, 1)
print('Image Name:{},predict:{}'.format(dataset_test.imgs[index][0], classes[pred.data.item()]))
index += 1
完整代码:
train.py
import torch.optim as optim
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torch.autograd import Variable
from model.EfficientNetv2 import efficientnetv2_s
# 设置全局参数
modellr = 1e-4
BATCH_SIZE = 32
EPOCHS = 50
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 数据预处理
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
transform_test = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
# 读取数据
dataset_train = datasets.ImageFolder('data/train', transform)
print(dataset_train.imgs)
# 对应文件夹的label
print(dataset_train.class_to_idx)
dataset_test = datasets.ImageFolder('data/val', transform_test)
# 对应文件夹的label
print(dataset_test.class_to_idx)
# 导入数据
train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False)
# 实例化模型并且移动到GPU
criterion = nn.CrossEntropyLoss()
model = efficientnetv2_s()
num_ftrs = model.classifier.in_features
model.classifier = nn.Linear(num_ftrs, 2)
model.to(DEVICE)
# 选择简单暴力的Adam优化器,学习率调低
optimizer = optim.Adam(model.parameters(), lr=modellr)
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
modellrnew = modellr * (0.1 ** (epoch // 50))
print("lr:", modellrnew)
for param_group in optimizer.param_groups:
param_group['lr'] = modellrnew
# 定义训练过程
def train(model, device, train_loader, optimizer, epoch):
model.train()
sum_loss = 0
total_num = len(train_loader.dataset)
print(total_num, len(train_loader))
for batch_idx, (data, target) in enumerate(train_loader):
data, target = Variable(data).to(device), Variable(target).to(device)
output = model(data)
loss = criterion(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print_loss = loss.data.item()
sum_loss += print_loss
if (batch_idx + 1) % 50 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\\tLoss: {:.6f}'.format(
epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),
100. * (batch_idx + 1) / len(train_loader), loss.item()))
ave_loss = sum_loss / len(train_loader)
print('epoch:{},loss:{}'.format(epoch, ave_loss))
#验证过程
def val(model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
total_num = len(test_loader.dataset)
print(total_num, len(test_loader))
with torch.no_grad():
for data, target in test_loader:
data, target = Variable(data).to(device), Variable(target).to(device)
output = model(data)
loss = criterion(output, target)
_, pred = torch.max(output.data, 1)
correct += torch.sum(pred == target)
print_loss = loss.data.item()
test_loss += print_loss
correct = correct.data.item()
acc = correct / total_num
avgloss = test_loss / len(test_loader)
print('\\nVal set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\\n'.format(
avgloss, correct, len(test_loader.dataset), 100 * acc))
# 训练
for epoch in range(1, EPOCHS + 1):
adjust_learning_rate(optimizer, epoch)
train(model, DEVICE, train_loader, optimizer, epoch)
val(model, DEVICE, test_loader)
torch.save(model, 'model.pth')
test1.py
import torch.utils.data.distributed
import torchvision.transforms as transforms
from torch.autograd import Variable
import os
from PIL import Image
classes = ('cat', 'dog')
transform_test = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = torch.load("model.pth")
model.eval()
model.to(DEVICE)
path='data/test/'
testList=os.listdir(path)
for file in testList:
img=Image.open(path+file)
img=transform_test(img)
img.unsqueeze_(0)
img = Variable(img).to(DEVICE)
out=model(img)
# Predict
_, pred = torch.max(out.data, 1)
print('Image Name:{},predict:{}'.format(file,classes[pred.data.item()]))
test2.py
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torch.autograd import Variable
classes = ('cat', 'dog')
transform_test = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = torch.load("model.pth")
model.eval()
model.to(DEVICE)
dataset_test = datasets.ImageFolder('data/datatest', transform_test)
print(len(dataset_test))
# 对应文件夹的label
for index in range(len(dataset_test)):
item = dataset_test[index]
img, label = item
img.unsqueeze_(0)
data = Variable(img).to(DEVICE)
output = model(data)
_, pred = torch.max(output.data, 1)
print('Image Name:{},predict:{}'.format(dataset_test.imgs[index][0], classes[pred.data.item()]))
index += 1
以上是关于图像分类实战——使用EfficientNetV2实现图像分类(Pytorch)的主要内容,如果未能解决你的问题,请参考以下文章