Python描述数据结构之最短路径篇

Posted 夏小悠

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python描述数据结构之最短路径篇相关的知识,希望对你有一定的参考价值。

前言

  本篇章主要介绍图的最短路径问题,包括Dijkstra算法和Floyd算法,并用Python代码实现。

1. 创建图

  在开始之前,我们先创建一个图,使用邻接矩阵表示有向网:

class Graph(object):
    """
    以邻接矩阵为存储结构创建有向网
    """
    def __init__(self, kind):
        # 图的类型: 无向图, 有向图, 无向网, 有向网
        # kind: Undigraph, Digraph, Undinetwork, Dinetwork,
        self.kind = kind
        # 顶点表
        self.vertexs = []
        # 边表, 即邻接矩阵, 是个二维的
        self.arcs = []
        # 当前顶点数
        self.vexnum = 0
        # 当前边(弧)数
        self.arcnum = 0

    def CreateGraph(self, vertex_list, edge_list):
        """
        创建图
        :param vertex_list: 顶点列表
        :param edge_list: 边列表
        :return:
        """
        self.vexnum = len(vertex_list)
        self.arcnum = len(edge_list)
        for vertex in vertex_list:
            vertex = Vertex(vertex)
            # 顶点列表
            self.vertexs.append(vertex)
            # 邻接矩阵, 初始化为无穷
            self.arcs.append([float('inf')] * self.vexnum)
        for edge in edge_list:
            ivertex = self.LocateVertex(edge[0])
            jvertex = self.LocateVertex(edge[1])
            weight = edge[2]
            self.InsertArc(ivertex, jvertex, weight)

    def LocateVertex(self, vertex):
        """
        定位顶点在邻接表中的位置
        :param vertex:
        :return:
        """
        index = 0
        while index < self.vexnum:
            if self.vertexs[index].data == vertex:
                return index
            else:
                index += 1

    def InsertArc(self, ivertex, jvertex, weight):
        """
        创建邻接矩阵
        :param ivertex:
        :param jvertex:
        :param weight:
        :return:
        """
        if self.kind == 'Dinetwork':
            self.arcs[ivertex][jvertex] = weight

  有关邻接矩阵中顶点结点Vertex()的定义可以参考这篇博客,这里就不在贴出相应的代码了。

2. 问题来源

在这里插入图片描述
  假如我从城市 A A A出发坐火车去其他城市旅游,那么如何规划路线使所花费的车票钱最少呢?若将上述图中的城市看成有向网中的顶点,并将两城市之间所需要的车票钱看做对应弧的权值,那么这一问题的本质就是求两个顶点之间权值最小的路径,简称最短路径 ( S h o r t e s t (Shortest (Shortest P a t h ) Path) Path)

3. Dijkstra算法

   D i j k s t r a Dijkstra Dijkstra算法,中文名叫迪杰斯特拉算法,它常用于求解源点到其余顶点的最短路径。
  假设 G = { V , { A } } G=\\{V, \\{A\\}\\} G={V,{A}}是含有 n n n个顶点的有向网,以该图中的顶点 v v v为源点,使用 D i j k s t r a Dijkstra Dijkstra算法求顶点 v v v到图中其余各顶点的最短路径的基本思路如下:
  (1) 使用集合 S S S记录已求得最短路径的终点,初始时 S = { v } S=\\{v\\} S={v}
  (2) 选择一条长度最短的路径,该路径的终点 w ∈ V − S w\\in V-S wVS,将 w w w并入 S S S,并将该最短路径的长度记为 D w D_w Dw
  (3) 对于 V − S V-S VS中任一顶点 s s s,将源点到顶点 s s s的最短路径长度记为 D s D_s Ds,并将顶点 w w w到顶点 s s s的弧的权值记为 D w s D_{ws} Dws,若 D w + D w s < D s D_w+D_{ws}<D_s Dw+Dws<Ds,则将源点到顶点 s s s的最短路径的长度修改为 D w + D w s D_w+D_{ws} Dw+Dws
  (4) 重复执行上述操作,直到 S = V S=V S=V
   D i j k s t r a Dijkstra Dijkstra算法有些 P r i m Prim Prim算法的影子,这里使用一个辅助列表Dist,用来存储源点到每一个终点的最短路径长度,列表Path来存储每一条最短路径中倒数第二个顶点的下标(弧尾下标),除此之外还需要一个列表flag来记录顶点是否已求得最短路径。下面结合着 D i j k s t r a Dijkstra Dijkstra算法来分析一下上面的那个有向网:

在这里插入图片描述

  (1) 这里要做的就是更新列表Dist和列表Path,假如以顶点 A A A为起始点,先将它加入 S S S中,然后寻找以顶点 A A A为弧尾的最短路径,这里找到了顶点 B B B,然后继续找下一个顶点。这个时候就要做一个判断了,即 D w + D w s < D s D_w+D_{ws}<D_s Dw+Dws<Ds是否成立,这里的顶点 s s s有两种选择,要么是顶点 C C C,要么是顶点 D D D,因为这两个顶点都是以顶点 w w w(即顶点 B B B)为弧尾,按照顺序,这个时候先选择了顶点 C C C,经判断: D A B + D B C < D A C D_{AB}+D_{BC}<D_{AC} DAB+DBC<DAC(即 4 + 3 = 7 < 8 4+3=7<8 4+3=7<8)成立,然后更新源点到顶点 s s s(即顶点 C C C)的距离为7。这个时候顶点 s s s又选择了顶点 D D D,经判断: D A B + D B D < D A D D_{AB}+D_{BD}<D_{AD} DAB+DBD<DAD(即 4 + 8 = 12 < ∞ 4+8=12<\\infty 4+8=12<)成立,然后更新源点到顶点 s s s(即顶点 D D D)的距离为12。
  (2) 然后寻找以顶点 C C C为弧尾的最短路径,这里找到了顶点 E E E,然后做一个路径长度判断,经判断: D A C + D C E < D A E D_{AC}+D_{CE}<D_{AE} DAC+DCE<DAE(即 7 + 1 = 8 < ∞ 7+1=8<\\infty 7+1=8<)成立,然后更新源点到顶点 s s s(即顶点 E E E)的距离为8,然后又找到了顶点 F F F,然后做一个路径长度判断,经判断: D A C + D C F < D A F D_{AC}+D_{CF}<D_{AF} DAC+DCF<DAF(即 7 + 6 = 13 <

以上是关于Python描述数据结构之最短路径篇的主要内容,如果未能解决你的问题,请参考以下文章

数据结构之最短路径 [迪杰斯特拉算法]

图论之最短路径floyd算法

最短路径之最短路径问题

贪心算法之最短路径(Dijkstra算法)

中考数学压轴题系列之最短路径问题

图论算法之最短路径