2021年大数据Hadoop(二十六):Yarn三大组件介绍
Posted Lansonli
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了2021年大数据Hadoop(二十六):Yarn三大组件介绍相关的知识,希望对你有一定的参考价值。
全网最详细的Hadoop文章系列,强烈建议收藏加关注!
后面更新文章都会列出历史文章目录,帮助大家回顾知识重点。
目录
本系列历史文章
2021年大数据Hadoop(二十五):YARN通俗介绍和基本架构
2021年大数据Hadoop(二十四):MapReduce高阶训练
2021年大数据Hadoop(二十三):MapReduce的运行机制详解
2021年大数据Hadoop(二十二):MapReduce的自定义分组
2021年大数据Hadoop(二十一):MapReuce的Combineer
2021年大数据Hadoop(二十):MapReduce的排序和序列化
2021年大数据Hadoop(十九):MapReduce分区
2021年大数据Hadoop(十八):MapReduce程序运行模式和深入解析
2021年大数据Hadoop(十七):MapReduce编程规范及示例编写
2021年大数据Hadoop(十六):MapReduce计算模型介绍
2021年大数据Hadoop(十五):Hadoop的联邦机制 Federation
2021年大数据Hadoop(十三):HDFS意想不到的其他功能
2021年大数据Hadoop(十一):HDFS的元数据辅助管理
2021年大数据Hadoop(八):HDFS的Shell命令行使用
2021年大数据Hadoop(七):HDFS分布式文件系统简介
2021年大数据Hadoop(六):全网最详细的Hadoop集群搭建
2021年大数据Hadoop(二):Hadoop发展简史和特性优点
前言
2021年全网最详细的大数据笔记,轻松带你从入门到精通,该栏目每天更新,汇总知识分享
Yarn三大组件介绍
ResourceManager
- ResourceManager负责整个集群的资源管理和分配,是一个全局的资源管理系统。
- NodeManager以心跳的方式向ResourceManager汇报资源使用情况(目前主要是CPU和内存的使用情况)。ResourceManager只接受NodeManager的资源回报信息,对于具体的资源处理则交给NodeManager自己处理。
- ResourceManager中的YARN Scheduler组件根据application的请求为其分配资源,不负责具体job的监控、追踪、运行状态反馈、启动等工作。
NodeManager
- NodeManager是每个节点上的资源和任务管理器,它是管理这台机器的代理,负责该节点程序的运行,以及该节点资源的管理和监控。YARN集群每个节点都运行一个NodeManager。
- NodeManager定时向ResourceManager汇报本节点资源(CPU、内存)的使用情况和Container的运行状态。当ResourceManager宕机时NodeManager自动连接ResourceManager备用节点。
- NodeManager接收并处理来自ApplicationMaster的Container启动、停止等各种请求。
ApplicationMaster
- 用户提交的每个应用程序均包含一个ApplicationMaster,它可以运行在ResourceManager以外的机器上。
- 负责与ResourceManage调度器协商以获取资源(用Container表示)。
- 将得到的任务进一步分配给内部的任务(资源的二次分配)。
- 与NodeManager通信以启动/停止任务。
- 监控所有任务运行状态,并在任务运行失败时重新为任务申请资源以重启任务。
本博客大数据系列文章会一直每天更新,记得收藏加关注喔~
以上是关于2021年大数据Hadoop(二十六):Yarn三大组件介绍的主要内容,如果未能解决你的问题,请参考以下文章
2021年大数据Hadoop(二十五):YARN通俗介绍和基本架构
2021年大数据Hadoop(二十八):YARN的调度器Scheduler
2021年大数据Hadoop(二十九):关于YARN常用参数设置
2021年大数据ELK(二十六):探索数据(Discovery)