一文搞明白Python多线程编程:threading库

Posted 思源湖的鱼

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了一文搞明白Python多线程编程:threading库相关的知识,希望对你有一定的参考价值。

前言

本文试图搞明白Python多线程编程

这是几个姊妹篇:

一、基础知识

1、并行和并发

在学习的时候,发现并行和并发在好些地方搞混了,这是两个概念,得先明确下

(1)定义

Erlang 之父 Joe Armstrong 画了一张很可爱的图来解释这两个概念:

  • 并发是两个队列交替使用一台咖啡机
  • 并行是两个队列同时使用两台咖啡机

在这里插入图片描述
两个词很好的说明了并发和并行的区别:

  • Parallel Computing:并行计算
  • Concurrent programming:并发编程

(2)联系

那么并发并行和多进程多线程的关系呢?

  • 多核cpu,多个进程可以并行在多个cpu中计算,当然也会存在进程切换;单核cpu,多个进程在这个单核cpu中是并发运行,根据时间片读取上下文+执行程序+保存上下文。同一个进程同一时间段只能在一个cpu中运行,如果进程数小于cpu数,那么未使用的cpu将会空闲
  • 多核cpu,进程中的多线程并行执行;单核cpu,多线程在单核cpu中并发执行,根据时间片切换线程。同一个线程同一时间段只能在一个cpu内核中运行,如果线程数小于cpu内核数,那么将有多余的内核空闲

场景:

  • 多核CPU——计算密集型任务:尽量使用并行计算,可以提高任务执行效率。计算密集型任务会持续地将CPU占满,此时有越多CPU来分担任务,计算速度就会越快,这是并行的用武之地
  • 单核CPU——计算密集型任务:此时的任务已经把CPU资源100%消耗了,就没必要使用并行计算,毕竟硬件障碍摆在那里
  • 单核CPU——I/O密集型任务:I/O密集型任务在任务执行时需要经常调用磁盘、屏幕、键盘等外设,由于调用外设时CPU会空闲,所以CPU的利用率并不高,此时使用多线程程序,只是便于人机交互。计算效率提升不大。
  • 多核CPU——I/O密集型任务:同单核CPU——I/O密集型任务

总结下:

  • 并行从代码层次上强依赖于多进程/多线程代码,从硬件角度上则依赖于多核CPU
  • 并发是一种现象:同时运行多个程序或多个任务需要被处理的现象,这些任务可能是并行执行的,也可能是串行执行的,和CPU核心数无关,是操作系统进程调度和CPU上下文切换达到的结果

2、进程和线程

(1)定义

1、进程

  • 进程是程序的一次执行过程,是一个动态概念,是程序在执行过程中分配和管理资源的基本单位
  • 在面向线程设计的系统(如当代多数操作系统、Linux 2.6及更新的版本)中,进程本身不是基本运行单位,而是线程的容器
  • 进程拥有自己独立的内存空间,所属线程可以访问进程的空间
  • 程序本身只是指令、数据及其组织形式的描述,进程才是程序的真正运行实例

2、线程

  • 线程是CPU调度和分派的基本单位,它可与同属一个进程的其他的线程共享进程所拥有的全部资源
  • 当前的操作系统是面向线程的,即以线程为基本运行单位,并按线程分配CPU

(2)联系

线程是进程的一部分,一个线程只能属于一个进程,而一个进程可以有多个线程,且至少有一个线程

可以看个图

在这里插入图片描述

区别:理解它们的差别,从资源使用的角度出发。(所谓的资源就是计算机里的中央处理器,内存,文件,网络等等)

  • 根本区别:进程是操作系统资源分配的基本单位,而线程是任务调度和执行的基本单位

  • 在开销方面:每个进程都有独立的代码和数据空间(程序上下文),程序之间的切换会有较大的开销;线程共享代码和数据空间,每个线程都有自己独立的运行栈和程序计数器(PC),线程之间切换的开销小

  • 所处环境:在操作系统中能同时运行多个进程(程序);而在同一个进程(程序)中有多个线程同时执行(通过CPU调度,在每个时间片中只有一个线程执行)

  • 内存分配方面:系统在运行的时候会为每个进程分配不同的内存空间;而对线程而言,除了CPU外,系统不会为线程分配内存(线程所使用的资源来自其所属进程的资源),线程组之间只能共享资源

包含关系:

  • 没有线程的进程可以看做是单线程的,如果一个进程内有多个线程,则执行过程不是一条线的,而是多条线(线程)共同完成的
  • 线程是进程的一部分,所以线程也被称为轻量级进程

3、全局解释器锁GIL

GIL是计算机程序设计语言解释器用于同步线程的一种机制,它使得任何时刻仅有一个线程在执行。即便在多核心处理器上,使用 GIL 的解释器也只允许同一时间执行一个线程

Python的Cpython解释器(普遍使用的解释器)使用GIL(因为Cpython解释器是非线程安全的),在一个Python解释器进程内可以执行多线程程序,但每次一个线程执行时就会获得全局解释器锁,使得别的线程只能等待,由于GIL几乎释放的同时就会被原线程马上获得,那些等待线程可能刚唤醒,所以经常造成线程不平衡享受CPU资源,此时多线程的效率比单线程还要低下

在python的官方文档里,它是这样解释GIL的:

In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple native threads from executing Python bytecodes at once. This lock is necessary mainly because CPython’s memory management is not thread-safe. (However, since the GIL exists, other features have grown to depend on the guarantees that it enforces.)

可以说它的初衷是很好的,为了保证线程间的数据安全性;但是随着时代的发展,GIL却成为了python并行计算的最大障碍,但这个时候GIL已经遍布CPython的各个角落,修改它的工作量太大,特别是对这种开源性的语言来说。但幸好GIL只锁了线程,我们可以再新建解释器进程来实现并行,那这就是multiprocessing的工作了

不同版本的差异:

  • 在python2.x里,GIL的释放逻辑是当前线程遇见IO操作或者ticks计数达到100时进行释放。(ticks可以看作是python自身的一个计数器,专门做用于GIL,每次释放后归零,这个计数可以通过sys.setcheckinterval 来调整)。而每次释放GIL锁,线程进行锁竞争、切换线程,会消耗资源。并且由于GIL锁存在,python里一个进程永远只能同时执行一个线程(拿到GIL的线程才能执行),这就是为什么在多核CPU上,python的多线程效率并不高。
  • 在python3.x中,GIL不使用ticks计数,改为使用计时器(执行时间达到阈值后,当前线程释放GIL),这样对CPU密集型程序更加友好,但依然没有解决GIL导致的同一时间只能执行一个线程的问题,所以效率依然不尽如人意。

二、threading库

1、线程的使用

(1)普通创建方式

import threading
import time

def run(n):
    print("task", n)
    time.sleep(1)
    print('2s')
    time.sleep(1)
    print('1s')
    time.sleep(1)
    print('0s')
    time.sleep(1)

if __name__ == '__main__':
    t1 = threading.Thread(target=run, args=("t1",))
    t2 = threading.Thread(target=run, args=("t2",))
    t1.start()
    t2.start()

(2)自定义线程

继承threading.Thread来自定义线程类,其本质是重构Thread类中的run方法

import threading
import time

class MyThread(threading.Thread):
    def __init__(self, n):
        super(MyThread, self).__init__()  # 重构run函数必须要写
        self.n = n

    def run(self):
        print("task", self.n)
        time.sleep(1)
        print('2s')
        time.sleep(1)
        print('1s')
        time.sleep(1)
        print('0s')
        time.sleep(1)

if __name__ == "__main__":
    t1 = MyThread("t1")
    t2 = MyThread("t2")
    t1.start()
    t2.start()

(3)守护线程

我们看下面这个例子,这里使用setDaemon(True)把所有的子线程都变成了主线程的守护线程,因此当主进程结束后,子线程也会随之结束。所以当主线程结束后,整个程序就退出了。

import threading
import time

def run(n):
    print("task", n)
    time.sleep(1)       #此时子线程停1s
    print('3')
    time.sleep(1)
    print('2')
    time.sleep(1)
    print('1')

if __name__ == '__main__':
    t = threading.Thread(target=run, args=("t1",))
    t.setDaemon(True)   #把子进程设置为守护线程,必须在start()之前设置
    t.start()
    print("end")

我们可以发现,设置守护线程之后,当主线程结束时,子线程也将立即结束,不再执行。

(4)主线程等待子线程结束

为了让守护线程执行结束之后,主线程再结束,我们可以使用join方法,让主线程等待子线程执行。

import threading
import time

def run(n):
    print("task", n)
    time.sleep(1)       #此时子线程停1s
    print('3')
    time.sleep(1)
    print('2')
    time.sleep(1)
    print('1')

if __name__ == '__main__':
    t = threading.Thread(target=run, args=("t1",))
    t.setDaemon(True)   #把子进程设置为守护线程,必须在start()之前设置
    t.start()
    t.join() # 设置主线程等待子线程结束
    print("end")

(5)多线程共享全局变量

线程是进程的执行单元,进程是系统分配资源的最小单位,所以在同一个进程中的多线程是共享资源的。

import threading
import time

g_num = 100

def work1():
    global g_num
    for i in range(3):
        g_num += 1
    print("in work1 g_num is : %d" % g_num)

def work2():
    global g_num
    print("in work2 g_num is : %d" % g_num)

if __name__ == '__main__':
    t1 = threading.Thread(target=work1)
    t1.start()
    time.sleep(1)
    t2 = threading.Thread(target=work2)
    t2.start()

2、线程池

面向对象开发中,大家知道创建和销毁对象是很费时间的,因为创建一个对象要获取内存资源或者其它更多资源。无节制的创建和销毁线程是一种极大的浪费。那我们可不可以把执行完任务的线程不销毁而重复利用呢?仿佛就是把这些线程放进一个池子,一方面我们可以控制同时工作的线程数量,一方面也避免了创建和销毁产生的开销。

线程池在标准库中其实是有体现的,只是在官方文章中基本没有被提及:

In : from multiprocessing.pool import ThreadPool
In : pool = ThreadPool(5)
In : pool.map(lambda x: x**2, range(5))
Out: [0, 1, 4, 9, 16]

当然我们也可以自己实现一个:

#-*-coding=utf-8-*-
import time
import threading
from random import random
from Queue import Queue


def double(n):
    return n * 2


class Worker(threading.Thread):
    def __init__(self, queue):
        super(Worker, self).__init__()
        self._q = queue
        self.daemon = True
        self.start()
    def run(self):
        while 1:
            f, args, kwargs = self._q.get()
            try:
                print 'USE: {}'.format(self.name)  # 线程名字
                print f(*args, **kwargs)
            except Exception as e:
                print e
            self._q.task_done()


class ThreadPool(object):
    def __init__(self, num_t=5):
        self._q = Queue(num_t)
        # Create Worker Thread
        for _ in range(num_t):
            Worker(self._q)
    def add_task(self, f, *args, **kwargs):
        self._q.put((f, args, kwargs))
    def wait_complete(self):
        self._q.join()


pool = ThreadPool()
for _ in range(8):
    wt = random()
    pool.add_task(double, wt)
    time.sleep(wt)
pool.wait_complete()

执行一下:

USE: Thread-1
1.58762376489
USE: Thread-2
0.0652918738849
USE: Thread-3
0.997407997138
USE: Thread-4
1.69333900685
USE: Thread-5
0.726900613676
USE: Thread-1
1.69110052253
USE: Thread-2
1.89039743989
USE: Thread-3
0.96281118122

线程池会保证同时提供 5 个线程工作,但是我们有 8 个待完成的任务,可以看到线程按顺序被循环利用了

3、同步机制

(1)Semaphore(信号量)

在多线程编程中,为了防止不同的线程同时对一个公用的资源(比如全部变量)进行修改,需要进行同时访问的数量(通常是 1)。信号量同步基于内部计数器,每调用一次 acquire (),计数器减 1;每调用一次 release (),计数器加 1. 当计数器为 0 时,acquire () 调用被阻塞。

import time
from random import random
from threading import Thread, Semaphore

sema = Semaphore(3)


def foo(tid):
    with sema:
        print '{} acquire sema'.format(tid)
        wt = random() * 2
        time.sleep(wt)
    print '{} release sema'.format(tid)


threads = []

for i in range(5):
    t = Thread(target=foo, args=(i,))
    threads.append(t)
    t.start()

for t in threads:
    t.join()

这个例子中,我们限制了同时能访问资源的数量为 3。看一下执行的效果:

❯ python semaphore.py
0 acquire sema
1 acquire sema
 2 acquire sema
2 release sema
 3 acquire sema
1 release sema
 4 acquire sema
0 release sema
3 release sema
4 release sema

(2)Lock(互斥锁)

Lock 也可以叫做互斥锁,其实相当于信号量为 1

我们先看一个不加锁的例子:

import time
from threading import Thread

value = 0


def getlock():
    global value
    new = value + 1
    time.sleep(0.001)  # 使用sleep让线程有机会切换
    value = new


threads = []

for i in range(100):
    t = Thread(target=getlock)
    t.start()
    threads.append(t)

for t in threads:
    t.join()

print value

执行一下:

❯ python nolock.py
16

大写的黑人问号,不加锁的情况下,结果会远远的小于 100

加上互斥锁看看:

import time
from threading import Thread, Lock

value = 0
lock = Lock()


def getlock():
    global value
    with lock:
        new = value + 1
        time.sleep(0.001)
        value = new

threads = []

for i in range(100):
    t = Thread(target=getlock)
    t.start()
    threads.append(t)

for t in threads:
    t.join()

print value

我们对 value 的自增加了锁,就可以保证了结果了:

❯ python lock.py
100

写法还可以是用acquire()release()

from threading import Thread,Lock
import os,time
def work():
    global n
    lock.acquire()
    temp=n
    time.sleep(0.1)
    n=temp-1
    lock.release()
if __name__ == '__main__':
    lock=Lock()
    n=100
    l=[]
    for i in range(100):
        p=Thread(target=work)
        l.append(p)
        p.start()
    for p in l:
        p.join()

(3)RLock(递归锁)

RLcok类的用法和Lock类一模一样,但它支持嵌套,在多个锁没有释放的时候一般会使用RLcok类。

acquire () 能够不被阻塞的被同一个线程调用多次。但是要注意的是 release () 需要调用与 acquire () 相同的次数才能释放锁。

(4)Condition(条件)

一个线程等待特定条件,而另一个线程发出特定条件满足的信号。最好说明的例子就是「生产者 / 消费者」模型:

import time
import threading

def consumer(cond):
    t = threading.currentThread()
    with cond:
        cond.wait()  # wait()方法创建了一个名为waiter的锁,并且设置锁的状态为locked。这个waiter锁用于线程间的通讯
        print '{}: Resource is available to consumer'.format(t.name)


def producer(cond):
    t = threading.currentThread()
    with cond:
        print '{}: Making resource available'.format(t.name)
        cond.notifyAll()  # 释放waiter锁,唤醒消费者


condition = threading.Condition()

c1 = threading.Thread(name='c1', target=consumer, args=(condition,))
c2 = threading.Thread(name='c2', target=consumer, args=(condition,))
p = threading.Thread(name='p', target=producer, args=(condition,))

c1.start()
time.sleep(1)
c2.start()
time.sleep(1)
p.start()

执行一下:

❯ python condition.py
p: Making resource available
c2: Resource is available to consumer
c1: Resource is available to consumer

可以看到生产者发送通知之后,消费者都收到了。

(5)Event(事件)

一个线程发送 / 传递事件,另外的线程等待事件的触发。主要提供以下几个方法:

  • clear 将flag设置为“False”
  • set 将flag设置为“True”
  • is_set 判断是否设置了flag
  • wait 会一直监听flag,如果没有检测到flag就一直处于阻塞状态

事件处理的机制:全局定义了一个“Flag”,当flag值为“False”,那么event.wait()就会阻塞,当flag值为“True”,那么event.wait()便不再阻塞。

我们同样的用「生产者 / 消费者」模型的例子:

import time
import threading
from random import randint


TIMEOUT = 2

def consumer(event, l):
    t = threading.currentThread()
    while 1:
        event_is_set = event.wait(TIMEOUT)
        if event_is_set:
            try:
                integer = l.pop()
                print '{} popped from list by {}'.format(integer, t.name)
                event.clear()  # 重置事件状态
            except IndexError:  # 为了让刚启动时容错
                pass


def producer(event, l):
    t = threading.currentThread()
    while 1:
        integer = randint(10, 100)
        l.append(integer)
        print '{} appended to list by {}'.format(integer, t.name)
        event.set()  # 设置事件
        time.sleep(1)


event = threading.Event()
l = []

threads = []

for name in ('consumer1', 'consumer2'):
    t = threading.Thread(name=name, target=consumer, args=(event, l))
    t.start()
    threads.append(t)

p = threading.Thread(name='producer1', target=producer, args=(event, l))
p.start()
threads.append(p)

for t in threads:
    t.join()

执行的效果是这样的:

77 appended to list by producer1
77 popped from list by consumer1
46 appended to list by producer1

以上是关于一文搞明白Python多线程编程:threading库的主要内容,如果未能解决你的问题,请参考以下文章

一文搞明白Python多进程编程:multiprocessing库

一文搞明白Python多进程编程:multiprocessing库

一文搞明白Python并发编程和并行编程

一文搞明白Python并发编程和并行编程

一文搞明白Python协程编程:asyncio库

一文搞明白Python协程编程:asyncio库