自适应策略转移的深度强化学习

Posted 人工智能博士

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了自适应策略转移的深度强化学习相关的知识,希望对你有一定的参考价值。

点上方人工智能算法与Python大数据获取更多干货

在右上方 ··· 设为星标 ★,第一时间获取资源

仅做学术分享,如有侵权,联系删除

转载于 :专知

深度学习与计算系统结合是现在业界发展的趋势。Logical Clocks的CEO Jim Dowling讲述了分布式深度学习最新技术发展,以及其Hosworks开源平台。

人工智能的需求在过去十年中显著增长,很大程度是深度学习的进步。这种增长是由深度(机器)学习技术的进步和利用硬件加速的能力推动的。然而,为了提高预测的质量和使机器学习解决方案在更复杂的应用中可行,需要大量的训练数据。尽管小型机器学习模型可以用适量的数据进行训练,但用于训练较大模型(如神经网络)的输入随着参数的数量呈指数增长。由于对处理训练数据的需求已经超过了计算机器计算能力的增长,因此需要将机器学习工作量分散到多台机器上,并将集中式系统转变为分布式系统。这些分布式系统提出了新的挑战,首先是训练过程的有效并行化和一致模型的创建。

分布式深度学习有很多好处——使用更多的GPU更快地训练模型,在许多GPU上并行超参数调优,并行消融研究以帮助理解深度神经网络的行为和性能。随着Spark 3.0的出现,GPU开始转向执行器,使用PySpark的分布式深度学习现在成为可能。然而,PySpark给迭代模型开发带来了挑战——从开发机器(笔记本电脑)开始,然后重新编写它们以运行在基于集群的环境中。

本讲座概述了分布式深度学习的技术,并提供了可用系统的概述,从而对该领域当前的最新技术进行了广泛的概述

Jim Dowling是 Logical Clocks公司的首席执行官,也是KTH皇家理工学院的副教授。他是开源的Hopsworks平台的首席架构师,这是一个横向可扩展的机器学习数据平台。

https://www.slideshare.net/dowlingjim/invited-lecture-on-gpus-and-distributed-deep-learning-at-uppsala-university

---------♥---------

声明:本内容来源网络,版权属于原作者

图片来源网络,不代表本公众号立场。如有侵权,联系删除

AI博士私人微信,还有少量空位

如何画出漂亮的深度学习模型图?

如何画出漂亮的神经网络图?

一文读懂深度学习中的各种卷积

点个在看支持一下吧

以上是关于自适应策略转移的深度强化学习的主要内容,如果未能解决你的问题,请参考以下文章

基于自适应策略的深度强化学习

基于自适应策略的深度强化学习

(pytorch复现)基于深度强化学习(CNN+dueling network/DQN/DDQN/D3QN)的自适应车间调度(JSP)

(pytorch复现)基于深度强化学习(CNN+dueling network/DQN/DDQN/D3QN)的自适应车间调度(JSP)

在线广告推荐系统中的深度强化学习

(pytorch复现)基于深度强化学习(CNN+dueling network/DQN/DDQN/D3QN/PER)的自适应车间调度(JSP)