如何使用pyecharts 1.9.0绘制柱状图仪表盘图3D图雷达图面积图等

Posted @阿证1024

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了如何使用pyecharts 1.9.0绘制柱状图仪表盘图3D图雷达图面积图等相关的知识,希望对你有一定的参考价值。

1. 绘制柱状图

from pyecharts.charts import Bar
from pyecharts import options as opts

v1 = [70,85,95,64]
v2 = [80,75,85,70]
str1 = ['数学','物理','化学','英语']
bar = Bar()
bar.add_xaxis(str1)
bar.add_yaxis('小明', v1)
bar.add_yaxis('小红', v2)
bar.set_global_opts(title_opts=opts.TitleOpts(title='柱状图', subtitle='分数'))
bar.render()

在这里插入图片描述

2.绘制仪表盘图

from pyecharts import options as opts
from pyecharts.charts import Gauge

c = (
    Gauge()
    .add("", [("完成率", 66.6)])
    .set_global_opts(title_opts=opts.TitleOpts(title="Gauge-基本示例"))
    .render("gauge_base.html")
)

在这里插入图片描述

3. 绘制3D图

import pyecharts.options as opts
from pyecharts.charts import Bar3D

hours = [
    "12a",
    "1a",
    "2a",
    "3a",
    "4a",
    "5a",
    "6a",
    "7a",
    "8a",
    "9a",
    "10a",
    "11a",
    "12p",
    "1p",
    "2p",
    "3p",
    "4p",
    "5p",
    "6p",
    "7p",
    "8p",
    "9p",
    "10p",
    "11p",
]
days = ["Saturday", "Friday", "Thursday", "Wednesday", "Tuesday", "Monday", "Sunday"]

data = [
    [0, 0, 5],
    [0, 1, 1],
    [0, 2, 0],
    [0, 3, 0],
    [0, 4, 0],
    [0, 5, 0],
    [0, 6, 0],
    [0, 7, 0],
    [0, 8, 0],
    [0, 9, 0],
    [0, 10, 0],
    [0, 11, 2],
    [0, 12, 4],
    [0, 13, 1],
    [0, 14, 1],
    [0, 15, 3],
    [0, 16, 4],
    [0, 17, 6],
    [0, 18, 4],
    [0, 19, 4],
    [0, 20, 3],
    [0, 21, 3],
    [0, 22, 2],
    [0, 23, 5],
    [1, 0, 7],
    [1, 1, 0],
    [1, 2, 0],
    [1, 3, 0],
    [1, 4, 0],
    [1, 5, 0],
    [1, 6, 0],
    [1, 7, 0],
    [1, 8, 0],
    [1, 9, 0],
    [1, 10, 5],
    [1, 11, 2],
    [1, 12, 2],
    [1, 13, 6],
    [1, 14, 9],
    [1, 15, 11],
    [1, 16, 6],
    [1, 17, 7],
    [1, 18, 8],
    [1, 19, 12],
    [1, 20, 5],
    [1, 21, 5],
    [1, 22, 7],
    [1, 23, 2],
    [2, 0, 1],
    [2, 1, 1],
    [2, 2, 0],
    [2, 3, 0],
    [2, 4, 0],
    [2, 5, 0],
    [2, 6, 0],
    [2, 7, 0],
    [2, 8, 0],
    [2, 9, 0],
    [2, 10, 3],
    [2, 11, 2],
    [2, 12, 1],
    [2, 13, 9],
    [2, 14, 8],
    [2, 15, 10],
    [2, 16, 6],
    [2, 17, 5],
    [2, 18, 5],
    [2, 19, 5],
    [2, 20, 7],
    [2, 21, 4],
    [2, 22, 2],
    [2, 23, 4],
    [3, 0, 7],
    [3, 1, 3],
    [3, 2, 0],
    [3, 3, 0],
    [3, 4, 0],
    [3, 5, 0],
    [3, 6, 0],
    [3, 7, 0],
    [3, 8, 1],
    [3, 9, 0],
    [3, 10, 5],
    [3, 11, 4],
    [3, 12, 7],
    [3, 13, 14],
    [3, 14, 13],
    [3, 15, 12],
    [3, 16, 9],
    [3, 17, 5],
    [3, 18, 5],
    [3, 19, 10],
    [3, 20, 6],
    [3, 21, 4],
    [3, 22, 4],
    [3, 23, 1],
    [4, 0, 1],
    [4, 1, 3],
    [4, 2, 0],
    [4, 3, 0],
    [4, 4, 0],
    [4, 5, 1],
    [4, 6, 0],
    [4, 7, 0],
    [4, 8, 0],
    [4, 9, 2],
    [4, 10, 4],
    [4, 11, 4],
    [4, 12, 2],
    [4, 13, 4],
    [4, 14, 4],
    [4, 15, 14],
    [4, 16, 12],
    [4, 17, 1],
    [4, 18, 8],
    [4, 19, 5],
    [4, 20, 3],
    [4, 21, 7],
    [4, 22, 3],
    [4, 23, 0],
    [5, 0, 2],
    [5, 1, 1],
    [5, 2, 0],
    [5, 3, 3],
    [5, 4, 0],
    [5, 5, 0],
    [5, 6, 0],
    [5, 7, 0],
    [5, 8, 2],
    [5, 9, 0],
    [5, 10, 4],
    [5, 11, 1],
    [5, 12, 5],
    [5, 13, 10],
    [5, 14, 5],
    [5, 15, 7],
    [5, 16, 11],
    [5, 17, 6],
    [5, 18, 0],
    [5, 19, 5],
    [5, 20, 3],
    [5, 21, 4],
    [5, 22, 2],
    [5, 23, 0],
    [6, 0, 1],
    [6, 1, 0],
    [6, 2, 0],
    [6, 3, 0],
    [6, 4, 0],
    [6, 5, 0],
    [6, 6, 0],
    [6, 7, 0],
    [6, 8, 0],
    [6, 9, 0],
    [6, 10, 1],
    [6, 11, 0],
    [6, 12, 2],
    [6, 13, 1],
    [6, 14, 3],
    [6, 15, 4],
    [6, 16, 0],
    [6, 17, 0],
    [6, 18, 0],
    [6, 19, 0],
    [6, 20, 1],
    [6, 21, 2],
    [6, 22, 2],
    [6, 23, 6],
]
data = [[d[1], d[0], d[2]] for d in data]


(
    Bar3D(init_opts=opts.InitOpts(width="1600px", height="800px"))
    .add(
        series_name="",
        data=data,
        xaxis3d_opts=opts.Axis3DOpts(type_="category", data=hours),
        yaxis3d_opts=opts.Axis3DOpts(type_="category", data=days),
        zaxis3d_opts=opts.Axis3DOpts(type_="value"),
    )
    .set_global_opts(
        visualmap_opts=opts.VisualMapOpts(
            max_=20,
            range_color=[
                "#313695",
                "#4575b4",
                "#74add1",
                "#abd9e9",
                "#e0f3f8",
                "#ffffbf",
                以上是关于如何使用pyecharts 1.9.0绘制柱状图仪表盘图3D图雷达图面积图等的主要内容,如果未能解决你的问题,请参考以下文章

实验四:大数据可视化工具—pyecharts

pyecharts应用2 柱状图

python绘制图表

可视化实验四:大数据可视化工具—ECharts

pyecharts水球图如何下载到ppt

12.pyecharts详细使用教程